Spaces:
Sleeping
Sleeping
File size: 7,799 Bytes
42cbd9d 038bb8a f5871c5 42cbd9d 6fc43de 4e247c2 42cbd9d 038bb8a 42cbd9d 6fc43de 42cbd9d 038bb8a 42cbd9d 859566c 42cbd9d 859566c 038bb8a 859566c 038bb8a 859566c 038bb8a 37f303a 038bb8a 37f303a 859566c 37f303a 859566c 37f303a 859566c 42cbd9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
from flask import Blueprint, request, jsonify
from werkzeug.utils import secure_filename
import os
import pytesseract # Ensure this is imported
import base64
from huggingface_hub import InferenceApi
from PIL import Image
from app.config import Config
from app.models import audio_model, sentiment_pipeline, emotion_pipeline, client
from app.services import extract_tasks
from app.utils import generate_tags, error_response
from transformers import pipeline
from PIL import Image
from werkzeug.utils import secure_filename
# Initialize Flask Blueprint
bp = Blueprint('main', __name__)
# ββ OCR via HF Inference API βββββββββββββββββββββββββββββββββββββββββββββββββ
# We're using Microsoft's TrOCR for printed text:
EMOTION_SCORE_THRESHOLD = 0.15 # Adjust based on your testing
MIN_SENTIMENT_CONFIDENCE = 0.4 # Below this becomes "neutral"
# =============================
# πΉ API Routes
# =============================
ocr_pipe = pipeline(
"image-to-text",
model="microsoft/trocr-base-handwritten" # or "microsoft/trocr-base-printed"
)
@bp.route('/transcribe', methods=['POST'])
def transcribe():
if 'file' not in request.files:
return error_response("No file provided", 400)
file = request.files['file']
file_path = os.path.join("/tmp", secure_filename(file.filename))
file.save(file_path)
try:
# Transcribe Audio
result = audio_model.transcribe(file_path)
transcription = result.get("text", "")
if not transcription.strip():
return error_response("Transcription is empty", 400)
# Send transcription to /analyze_text API
analysis_response = analyze_text_internal(transcription)
tags = generate_tags(transcription) # Function to extract tags from text
return jsonify({
"transcription": transcription,
"sentiment": analysis_response["sentiment"],
"emotion": analysis_response["emotion"],
"confidence": analysis_response["confidence"],
"tags": tags
})
except Exception as e:
return error_response(str(e), 500)
# @bp.route('/analyze_image', methods=['POST'])
# def analyze_image():
# if 'file' not in request.files:
# return error_response("No image file provided", 400)
#
# file = request.files['file']
# image_bytes = file.read()
#
# try:
# # send raw bytes to HF inference
# result = ocr_api(image_bytes)
# # TroCR returns a single string of text
# extracted = ""
# if isinstance(result, str):
# extracted = result
# elif isinstance(result, dict) and "generated_text" in result:
# extracted = result["generated_text"]
# else:
# # fallback to printing whatever we got
# extracted = str(result)
#
# extracted = extracted.strip()
# if not extracted:
# return error_response("No text extracted from image", 400)
@bp.route('/analyze_image', methods=['POST'])
def analyze_image():
if 'file' not in request.files:
return error_response("No image file provided", 400)
file = request.files["file"]
path = "/tmp/" + secure_filename(file.filename)
file.save(path)
# # read raw bytes and base64βencode for JSON serialization
# with open(path, "rb") as img_f:
# raw_bytes = img_f.read()
# b64_str = base64.b64encode(raw_bytes).decode("utf-8")
#
try:
# # 1) Ask the vision-LLM to extract text, passing base64 string
# completion = client.chat.completions.create(
# model="mistralai/Mistral-Small-3.1-24B-Instruct-2503",
# messages=[{
# "role": "user",
# "content": [
# {"type": "text", "text": "Extract any text you see in this image."},
# {"type": "image_bytes", "image_bytes": {"data": b64_str}}
# ]
# }],
# max_tokens=512,
# )
img = Image.open(path).convert("RGB")
# run OCR pipeline, which returns a list of dicts
ocr_results = ocr_pipe(img)
# extract the generated text from the first result
extracted = ""
if isinstance(ocr_results, list) and len(ocr_results) > 0 and "generated_text" in ocr_results[0]:
extracted = ocr_results[0]["generated_text"].strip()
else:
extracted = str(ocr_results)
print("OCR extracted text:", extracted)
# now analyze the extracted string
analysis = analyze_text_internal(extracted)
tags = generate_tags(extracted)
return jsonify({
"extracted_text": extracted,
"sentiment": analysis["sentiment"],
"emotion": analysis["emotion"],
"confidence": analysis["confidence"],
"tags": tags
})
except Exception as e:
return error_response(str(e), 500)
# Internal function to call analyze_text directly
def analyze_text_internal(text):
try:
# Get sentiment (positive/neutral/negative)
sentiment = sentiment_pipeline(text)[0]
# Get dominant emotion (anger/disgust/fear/joy/neutral/sadness/surprise)
emotion = emotion_pipeline(text)[0][0]
return {
"sentiment": sentiment['label'],
"emotion": emotion['label'],
"confidence": {
"sentiment": round(sentiment['score'], 3),
"emotion": round(emotion['score'], 3)
}
}
except Exception as e:
print(f"Analysis error: {str(e)}")
return error_response(f"Processing error: {str(e)}", 500)
@bp.route('/analyze_text', methods=['POST'])
def analyze_text():
data = request.json
if not data or 'text' not in data:
return error_response("No text provided", 400)
text = data['text'].strip().lower()
try:
# Get sentiment (positive/neutral/negative)
sentiment = sentiment_pipeline(text)[0]
# Get dominant emotion (anger/disgust/fear/joy/neutral/sadness/surprise)
emotion = emotion_pipeline(text)[0][0]
tags = generate_tags(text)
return {
"sentiment": sentiment['label'],
"emotion": emotion['label'],
"confidence": {
"sentiment": round(sentiment['score'], 3),
"emotion": round(emotion['score'], 3)
},
"tags": tags
}
except Exception as e:
print(f"Analysis error: {str(e)}")
return error_response(f"Processing error: {str(e)}", 500)
# π 3. Extract Actionable Tasks
@bp.route('/extract_actions', methods=['POST'])
def extract_actions():
data = request.json
if not data or 'text' not in data:
return error_response("No text provided", 400)
text = data['text']
try:
tasks = extract_tasks(text)
return jsonify({"tasks": tasks})
except Exception as e:
return error_response(str(e), 500)
# =============================
# πΉ Error Handling
# =============================
@bp.errorhandler(404)
def not_found_error(error):
return error_response("Not Found", 404)
@bp.errorhandler(500)
def internal_error(error):
return error_response("Internal Server Error", 500)
|