Spaces:
Runtime error
Runtime error
File size: 6,007 Bytes
835936b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set protobuf implementation to avoid C++ extension issues
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
# Load keys from environment
groq_api_key = os.getenv("GROQ_API_KEY")
serper_api_key = os.getenv("SERPER_API_KEY")
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
# ---- Imports ----
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
import json
# ---- Tools ----
@tool
def multiply(a: int, b: int) -> int:
return a * b
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def subtract(a: int, b: int) -> int:
return a - b
@tool
def divide(a: int, b: int) -> float:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
return a % b
@tool
def wiki_search(query: str) -> str:
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted}
@tool
def web_search(query: str) -> str:
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"web_results": formatted}
@tool
def arvix_search(query: str) -> str:
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
]
)
return {"arvix_results": formatted}
# ---- Embedding & Vector Store Setup ----
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
json_QA = []
with open('metadata.jsonl', 'r') as jsonl_file:
for line in jsonl_file:
json_QA.append(json.loads(line))
documents = [
Document(
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
metadata={"source": sample["task_id"]}
)
for sample in json_QA
]
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory="./chroma_db",
collection_name="my_collection"
)
vector_store.persist()
print("Documents inserted:", vector_store._collection.count())
@tool
def similar_question_search(query: str) -> str:
matched_docs = vector_store.similarity_search(query, 3)
formatted = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in matched_docs
]
)
return {"similar_questions": formatted}
# ---- System Prompt ----
system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
"""
sys_msg = SystemMessage(content=system_prompt)
# ---- Tool List ----
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search, similar_question_search
]
# ---- Graph Definition ----
def build_graph(provider: str = "groq"):
if provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_api_key)
elif provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(repo_id="mosaicml/mpt-30b", temperature=0)
)
else:
raise ValueError("Invalid provider: choose 'groq', 'google', or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
if similar:
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
|