File size: 6,007 Bytes
835936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Set protobuf implementation to avoid C++ extension issues
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"

# Load keys from environment
groq_api_key = os.getenv("GROQ_API_KEY")
serper_api_key = os.getenv("SERPER_API_KEY")
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")

# ---- Imports ----
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
import json

# ---- Tools ----

@tool
def multiply(a: int, b: int) -> int:
    return a * b

@tool
def add(a: int, b: int) -> int:
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    return a - b

@tool
def divide(a: int, b: int) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    return a % b

@tool
def wiki_search(query: str) -> str:
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted}

@tool
def web_search(query: str) -> str:
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted}

@tool
def arvix_search(query: str) -> str:
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted}

# ---- Embedding & Vector Store Setup ----

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

json_QA = []
with open('metadata.jsonl', 'r') as jsonl_file:
    for line in jsonl_file:
        json_QA.append(json.loads(line))

documents = [
    Document(
        page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
        metadata={"source": sample["task_id"]}
    )
    for sample in json_QA
]

vector_store = Chroma.from_documents(
    documents=documents,
    embedding=embeddings,
    persist_directory="./chroma_db",
    collection_name="my_collection"
)
vector_store.persist()
print("Documents inserted:", vector_store._collection.count())

@tool
def similar_question_search(query: str) -> str:
    matched_docs = vector_store.similarity_search(query, 3)
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in matched_docs
        ]
    )
    return {"similar_questions": formatted}

# ---- System Prompt ----

system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
"""

sys_msg = SystemMessage(content=system_prompt)

# ---- Tool List ----

tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search, web_search, arvix_search, similar_question_search
]

# ---- Graph Definition ----

def build_graph(provider: str = "groq"):
    if provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_api_key)
    elif provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(repo_id="mosaicml/mpt-30b", temperature=0)
        )
    else:
        raise ValueError("Invalid provider: choose 'groq', 'google', or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        similar = vector_store.similarity_search(state["messages"][0].content)
        if similar:
            example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
            return {"messages": [sys_msg] + state["messages"] + [example_msg]}
        return {"messages": [sys_msg] + state["messages"]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()