Spaces:
Runtime error
Runtime error
File size: 21,663 Bytes
757ebd9 ca2b63a 574b6ca a42d6f7 51e7f46 10e9b7d a42d6f7 757ebd9 e80aab9 3db6293 e80aab9 ca2b63a 31243f4 ca2b63a a42d6f7 51e7f46 c549c70 51e7f46 c549c70 51e7f46 c549c70 51e7f46 c549c70 51e7f46 c549c70 51e7f46 c549c70 a42d6f7 757ebd9 ca2b63a a42d6f7 ca2b63a a42d6f7 ca2b63a a42d6f7 757ebd9 51e7f46 ca2b63a 757ebd9 ca2b63a a42d6f7 757ebd9 c549c70 757ebd9 a42d6f7 c549c70 a42d6f7 c549c70 a42d6f7 757ebd9 c549c70 757ebd9 c549c70 ca2b63a 757ebd9 ca2b63a a42d6f7 ca2b63a a42d6f7 757ebd9 ca2b63a 757ebd9 a42d6f7 757ebd9 a42d6f7 ca2b63a 31243f4 ca2b63a c549c70 ca2b63a 51e7f46 c549c70 51e7f46 c549c70 51e7f46 c549c70 51e7f46 c549c70 51e7f46 ca2b63a a42d6f7 c549c70 4021bf3 757ebd9 51e7f46 a42d6f7 ca2b63a 31243f4 ca2b63a 31243f4 757ebd9 3c4371f 7e4a06b 757ebd9 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 51e7f46 757ebd9 31243f4 757ebd9 31243f4 3c4371f a42d6f7 31243f4 757ebd9 36ed51a a42d6f7 3c4371f 757ebd9 31243f4 eccf8e4 31243f4 7d65c66 31243f4 757ebd9 31243f4 e80aab9 31243f4 3c4371f 757ebd9 7d65c66 31243f4 e80aab9 757ebd9 7d65c66 3c4371f a42d6f7 31243f4 a42d6f7 31243f4 a42d6f7 31243f4 7d65c66 a42d6f7 51e7f46 31243f4 a42d6f7 31243f4 3c4371f 31243f4 757ebd9 a42d6f7 31243f4 e80aab9 a42d6f7 31243f4 e80aab9 7d65c66 e80aab9 a42d6f7 31243f4 a42d6f7 e80aab9 3c4371f e80aab9 a42d6f7 31243f4 a42d6f7 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 a42d6f7 31243f4 7d65c66 31243f4 a42d6f7 3c4371f a42d6f7 3c4371f a42d6f7 e80aab9 a42d6f7 31243f4 a42d6f7 7d65c66 a42d6f7 31243f4 e80aab9 757ebd9 a42d6f7 0ee0419 e514fd7 a42d6f7 51e7f46 a42d6f7 51e7f46 e514fd7 e80aab9 a42d6f7 e80aab9 a42d6f7 31243f4 e80aab9 757ebd9 e80aab9 a42d6f7 3c4371f ca2b63a 7d65c66 3c4371f a42d6f7 7d65c66 a42d6f7 7d65c66 a42d6f7 7d65c66 a42d6f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# app.py
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import torch
# Import real tool dependencies
try:
from duckduckgo_search import DDGS
except ImportError:
print("Warning: duckduckgo_search not installed. Web search will be limited.")
DDGS = None
try:
from sympy import sympify
from sympy.core.sympify import SympifyError
except ImportError:
print("Warning: sympy not installed. Math calculator will be limited.")
sympify = None
SympifyError = Exception
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced Agent Definition ---
class SmartAgent:
def __init__(self):
print("Initializing Local LLM Agent...")
# Check available memory and CUDA
if torch.cuda.is_available():
print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
else:
print("CUDA not available, using CPU")
# Use a smaller, more efficient model for Hugging Face Spaces
model_options = [
"microsoft/DialoGPT-medium", # Much smaller, works well for chat
"google/flan-t5-base", # Good for reasoning tasks
"microsoft/DialoGPT-small", # Smallest fallback
"HuggingFaceH4/zephyr-7b-beta" # Original (may fail in limited memory)
]
model_name = model_options[1] # Start with flan-t5-base
print(f"Attempting to load model: {model_name}")
try:
# Initialize with memory-efficient settings
self.llm = HuggingFaceLLM(
model_name=model_name,
tokenizer_name=model_name,
context_window=1024, # Increased for better reasoning
max_new_tokens=256, # Increased for better responses
generate_kwargs={
"temperature": 0.3, # Lower temperature for more focused responses
"do_sample": True,
"top_p": 0.9,
"repetition_penalty": 1.1
},
device_map="auto",
# Add memory optimization parameters
model_kwargs={
"torch_dtype": torch.float16, # Use half precision
"low_cpu_mem_usage": True,
"load_in_8bit": True, # Enable 8-bit quantization if available
},
# Add system message for better instruction following
system_message="You are a helpful AI assistant that can search the web and perform calculations. Always provide detailed, accurate answers."
)
print(f"Successfully loaded model: {model_name}")
except Exception as e:
print(f"Failed to load {model_name}: {e}")
# Fallback to an even smaller model
try:
fallback_model = "microsoft/DialoGPT-small"
print(f"Falling back to: {fallback_model}")
self.llm = HuggingFaceLLM(
model_name=fallback_model,
tokenizer_name=fallback_model,
context_window=256,
max_new_tokens=64,
generate_kwargs={"temperature": 0.7, "do_sample": True},
device_map="cpu", # Force CPU to avoid memory issues
model_kwargs={"low_cpu_mem_usage": True}
)
print(f"Successfully loaded fallback model: {fallback_model}")
except Exception as e2:
print(f"Flan-T5 also failed: {e2}")
# Try an even more basic approach with a very small model
try:
basic_model = "microsoft/DialoGPT-small"
print(f"Final fallback to: {basic_model}")
self.llm = HuggingFaceLLM(
model_name=basic_model,
tokenizer_name=basic_model,
context_window=512,
max_new_tokens=128,
generate_kwargs={"temperature": 0.3, "do_sample": True},
device_map="cpu", # Force CPU to avoid memory issues
model_kwargs={"low_cpu_mem_usage": True}
)
print(f"Successfully loaded final fallback: {basic_model}")
except Exception as e3:
print(f"All model loading attempts failed: {e3}")
raise Exception("Unable to load any language model")
# Define tools with real implementations
self.tools = [
FunctionTool.from_defaults(
fn=self.web_search,
name="web_search",
description="Searches the web for current information using DuckDuckGo when questions require up-to-date knowledge"
),
FunctionTool.from_defaults(
fn=self.math_calculator,
name="math_calculator",
description="Performs mathematical calculations and symbolic math using SymPy when questions involve numbers or equations"
)
]
# Create ReAct agent with tools
try:
self.agent = ReActAgent.from_tools(
tools=self.tools,
llm=self.llm,
verbose=True,
max_iterations=3 # Limit iterations to prevent infinite loops
)
print("Local LLM Agent initialized successfully.")
except Exception as e:
print(f"Error creating ReAct agent: {e}")
# Create a simple fallback agent
self.agent = None
print("Using fallback direct tool calling approach")
def web_search(self, query: str) -> str:
"""Real web search using DuckDuckGo"""
print(f"Web search triggered for: {query[:50]}...")
if not DDGS:
return "Web search unavailable - duckduckgo_search not installed"
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=5)) # Get more results
if results:
formatted_results = []
for i, r in enumerate(results, 1):
title = r.get('title', 'No title')
body = r.get('body', 'No description')[:300] # More context
url = r.get('href', '')
formatted_results.append(f"{i}. **{title}**\n{body}...\nSource: {url}")
return "\n\n".join(formatted_results)
else:
return f"No search results found for '{query}'. Try rephrasing your search terms."
except Exception as e:
print(f"Web search error: {e}")
return f"Error during web search for '{query}': {str(e)}"
def math_calculator(self, expression: str) -> str:
"""Safe math evaluation using SymPy"""
print(f"Math calculation triggered for: {expression}")
if not sympify:
# Fallback to basic eval with safety checks
try:
# Only allow basic math operations
allowed_chars = set('0123456789+-*/().^ ')
if not all(c in allowed_chars for c in expression.replace(' ', '')):
return "Error: Only basic math operations are allowed"
result = eval(expression.replace('^', '**'))
return str(result)
except Exception as e:
return f"Error: Could not evaluate the mathematical expression - {str(e)}"
try:
# Use SymPy for safe evaluation
result = sympify(expression).evalf()
return str(result)
except SympifyError as e:
return f"Error: Could not parse the mathematical expression - {str(e)}"
except Exception as e:
return f"Error: Calculation failed - {str(e)}"
def __call__(self, question: str) -> str:
print(f"Processing question (first 50 chars): {question[:50]}...")
# Enhanced reasoning approach
question_lower = question.lower()
# Check if we need to analyze files
if any(word in question_lower for word in ['file', 'excel', 'csv', 'spreadsheet', 'data', 'attached']):
return "I cannot access attached files in this environment. Please ensure the file is accessible via a direct URL or describe the data content directly in your question."
# Check if we need web search
needs_web_search = any(word in question_lower for word in [
'current', 'latest', 'recent', 'today', 'news', 'who is', 'what is',
'competition', 'winner', 'recipient', 'nationality', 'country',
'malko', 'century', 'award', 'born', 'died'
])
# Check if we need math calculation
needs_calculation = any(word in question_lower for word in [
'calculate', 'compute', 'sum', 'total', 'average', 'percentage',
'equation', 'solve', 'math', 'number'
]) or any(char in question for char in '+-*/=()0123456789')
try:
if self.agent:
# Try using the ReAct agent first
response = self.agent.query(question)
response_str = str(response)
# Check if the response is too short or nonsensical
if len(response_str.strip()) < 3 or response_str.strip() in ['!', '?', 'what', 'I', 'The', 'A']:
print("Agent gave a poor response, trying direct tool approach...")
return self._direct_tool_approach(question, needs_web_search, needs_calculation)
return response_str
else:
# Use direct tool approach
return self._direct_tool_approach(question, needs_web_search, needs_calculation)
except Exception as e:
print(f"Agent error: {str(e)}")
print(f"Full traceback: {traceback.format_exc()}")
# Try direct tool approach as fallback
try:
return self._direct_tool_approach(question, needs_web_search, needs_calculation)
except:
return f"I apologize, but I'm having technical difficulties processing your question. The question appears to be: {question[:100]}..."
def _direct_tool_approach(self, question: str, needs_web_search: bool, needs_calculation: bool) -> str:
"""Direct tool usage when agent fails"""
if needs_web_search:
# Extract key search terms
search_terms = []
important_words = question.split()
for word in important_words:
if len(word) > 3 and word.lower() not in ['what', 'when', 'where', 'who', 'how', 'the', 'and', 'or', 'but', 'from', 'with']:
search_terms.append(word)
search_query = ' '.join(search_terms[:5]) # Limit to 5 key terms
print(f"Performing web search for: {search_query}")
search_result = self.web_search(search_query)
return f"Based on my web search for '{search_query}':\n\n{search_result}\n\nPlease review the search results above to find the specific information you're looking for."
if needs_calculation:
# Try to extract mathematical expressions
import re
# Look for mathematical expressions
math_patterns = re.findall(r'[\d+\-*/().\s]+', question)
for pattern in math_patterns:
if any(char in pattern for char in '+-*/') and any(char.isdigit() for char in pattern):
result = self.math_calculator(pattern.strip())
return f"Mathematical calculation result: {result}"
# Default response with better reasoning
return f"I understand you're asking about: {question[:150]}... However, I need more specific information or context to provide an accurate answer. Could you please rephrase your question or provide additional details?"
# --- Memory cleanup function ---
def cleanup_memory():
"""Clean up GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("GPU memory cleared")
# --- Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Clean memory before starting
cleanup_memory()
# Instantiate Agent
try:
agent = SmartAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
print(f"Full traceback: {traceback.format_exc()}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# Run Agent on all questions
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
print(f"โ
Completed question {i}: {task_id}")
# Clean memory after each question
if i % 5 == 0: # Every 5 questions
cleanup_memory()
except Exception as e:
print(f"โ Error running agent on task {task_id}: {e}")
error_answer = f"AGENT ERROR: {str(e)}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_answer
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent finished processing. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# Submit answers
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"๐ Submission Successful!\n\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("โ
Submission successful!")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"โ Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "โ Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"โ Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"โ An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Gradio UI ---
with gr.Blocks(title="Local LLM Agent Evaluation") as demo:
gr.Markdown("# ๐ค Local LLM Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. ๐ Log in to your Hugging Face account using the button below
2. ๐ Click 'Run Evaluation & Submit All Answers'
3. โณ Wait for the local LLM to process all questions (using memory-optimized smaller model)
4. ๐ View your results and submission status
**Features:**
- ๐ Real web search using DuckDuckGo
- ๐งฎ Advanced math calculations with SymPy
- ๐ง Memory-optimized language model with fallback options
- ๐ก๏ธ Error handling and recovery mechanisms
"""
)
with gr.Row():
gr.LoginButton()
with gr.Row():
run_button = gr.Button(
"๐ Run Evaluation & Submit All Answers",
variant="primary",
size="lg"
)
status_output = gr.Textbox(
label="๐ Run Status / Submission Result",
lines=8,
interactive=False,
placeholder="Click the button above to start the evaluation..."
)
results_table = gr.DataFrame(
label="๐ Questions and Agent Answers",
wrap=True,
interactive=False
)
# Wire up the button
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "="*60)
print("๐ Application Startup at", pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S"))
print("="*60)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"โ
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}")
else:
print("โน๏ธ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"โ
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("โน๏ธ SPACE_ID environment variable not found (running locally?).")
print("-" * 60)
print("๐ฏ Launching Gradio Interface for Local LLM Agent Evaluation...")
# Launch without share=True for Hugging Face Spaces
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |