File size: 21,663 Bytes
757ebd9
ca2b63a
 
 
 
574b6ca
 
 
 
a42d6f7
51e7f46
10e9b7d
a42d6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
757ebd9
e80aab9
3db6293
e80aab9
ca2b63a
 
31243f4
ca2b63a
a42d6f7
51e7f46
 
 
 
 
 
 
 
 
 
c549c70
51e7f46
 
 
 
 
 
 
 
 
 
 
c549c70
 
51e7f46
c549c70
51e7f46
c549c70
 
51e7f46
 
 
 
 
 
 
c549c70
 
 
51e7f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c549c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a42d6f7
757ebd9
ca2b63a
 
 
 
a42d6f7
ca2b63a
 
 
 
a42d6f7
ca2b63a
 
a42d6f7
757ebd9
51e7f46
 
 
 
 
 
 
 
 
 
 
 
 
ca2b63a
 
757ebd9
ca2b63a
a42d6f7
 
 
 
757ebd9
 
c549c70
757ebd9
a42d6f7
 
 
c549c70
a42d6f7
c549c70
 
a42d6f7
757ebd9
c549c70
757ebd9
 
c549c70
ca2b63a
 
757ebd9
ca2b63a
a42d6f7
 
 
 
 
 
 
 
 
 
 
 
 
ca2b63a
a42d6f7
757ebd9
ca2b63a
757ebd9
a42d6f7
757ebd9
a42d6f7
ca2b63a
31243f4
ca2b63a
c549c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca2b63a
51e7f46
c549c70
51e7f46
c549c70
51e7f46
c549c70
 
 
 
51e7f46
c549c70
 
 
 
51e7f46
ca2b63a
 
a42d6f7
c549c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
757ebd9
51e7f46
 
 
 
 
 
 
 
a42d6f7
ca2b63a
31243f4
ca2b63a
31243f4
 
757ebd9
3c4371f
7e4a06b
757ebd9
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
51e7f46
 
 
757ebd9
31243f4
757ebd9
31243f4
3c4371f
a42d6f7
31243f4
757ebd9
36ed51a
a42d6f7
3c4371f
757ebd9
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
757ebd9
 
31243f4
e80aab9
31243f4
 
3c4371f
757ebd9
 
7d65c66
31243f4
 
e80aab9
757ebd9
7d65c66
 
3c4371f
a42d6f7
 
31243f4
 
a42d6f7
31243f4
 
 
a42d6f7
 
 
31243f4
7d65c66
 
a42d6f7
 
 
 
 
 
51e7f46
 
 
 
 
31243f4
a42d6f7
 
 
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
757ebd9
a42d6f7
 
 
 
 
 
 
31243f4
e80aab9
a42d6f7
31243f4
e80aab9
7d65c66
e80aab9
 
a42d6f7
31243f4
a42d6f7
e80aab9
3c4371f
 
 
e80aab9
a42d6f7
31243f4
 
a42d6f7
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
a42d6f7
31243f4
7d65c66
31243f4
a42d6f7
3c4371f
a42d6f7
3c4371f
 
 
a42d6f7
e80aab9
a42d6f7
31243f4
 
 
a42d6f7
7d65c66
a42d6f7
31243f4
 
 
e80aab9
757ebd9
 
a42d6f7
 
0ee0419
e514fd7
 
a42d6f7
 
51e7f46
a42d6f7
 
 
 
 
51e7f46
 
e514fd7
e80aab9
 
a42d6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
a42d6f7
31243f4
 
 
e80aab9
 
757ebd9
e80aab9
a42d6f7
 
 
 
3c4371f
ca2b63a
7d65c66
3c4371f
 
a42d6f7
 
 
 
 
7d65c66
a42d6f7
 
7d65c66
a42d6f7
7d65c66
a42d6f7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# app.py
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import torch

# Import real tool dependencies
try:
    from duckduckgo_search import DDGS
except ImportError:
    print("Warning: duckduckgo_search not installed. Web search will be limited.")
    DDGS = None

try:
    from sympy import sympify
    from sympy.core.sympify import SympifyError
except ImportError:
    print("Warning: sympy not installed. Math calculator will be limited.")
    sympify = None
    SympifyError = Exception

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Advanced Agent Definition ---
class SmartAgent:
    def __init__(self):
        print("Initializing Local LLM Agent...")
        
        # Check available memory and CUDA
        if torch.cuda.is_available():
            print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
        else:
            print("CUDA not available, using CPU")
        
        # Use a smaller, more efficient model for Hugging Face Spaces
        model_options = [
            "microsoft/DialoGPT-medium",  # Much smaller, works well for chat
            "google/flan-t5-base",        # Good for reasoning tasks
            "microsoft/DialoGPT-small",   # Smallest fallback
            "HuggingFaceH4/zephyr-7b-beta"  # Original (may fail in limited memory)
        ]
        
        model_name = model_options[1]  # Start with flan-t5-base
        print(f"Attempting to load model: {model_name}")
        
        try:
            # Initialize with memory-efficient settings
            self.llm = HuggingFaceLLM(
                model_name=model_name,
                tokenizer_name=model_name,
                context_window=1024,  # Increased for better reasoning
                max_new_tokens=256,   # Increased for better responses
                generate_kwargs={
                    "temperature": 0.3,   # Lower temperature for more focused responses
                    "do_sample": True,
                    "top_p": 0.9,
                    "repetition_penalty": 1.1
                },
                device_map="auto",
                # Add memory optimization parameters
                model_kwargs={
                    "torch_dtype": torch.float16,  # Use half precision
                    "low_cpu_mem_usage": True,
                    "load_in_8bit": True,  # Enable 8-bit quantization if available
                },
                # Add system message for better instruction following
                system_message="You are a helpful AI assistant that can search the web and perform calculations. Always provide detailed, accurate answers."
            )
            print(f"Successfully loaded model: {model_name}")
            
        except Exception as e:
            print(f"Failed to load {model_name}: {e}")
            # Fallback to an even smaller model
            try:
                fallback_model = "microsoft/DialoGPT-small"
                print(f"Falling back to: {fallback_model}")
                self.llm = HuggingFaceLLM(
                    model_name=fallback_model,
                    tokenizer_name=fallback_model,
                    context_window=256,
                    max_new_tokens=64,
                    generate_kwargs={"temperature": 0.7, "do_sample": True},
                    device_map="cpu",  # Force CPU to avoid memory issues
                    model_kwargs={"low_cpu_mem_usage": True}
                )
                print(f"Successfully loaded fallback model: {fallback_model}")
            except Exception as e2:
                print(f"Flan-T5 also failed: {e2}")
                # Try an even more basic approach with a very small model
                try:
                    basic_model = "microsoft/DialoGPT-small"
                    print(f"Final fallback to: {basic_model}")
                    self.llm = HuggingFaceLLM(
                        model_name=basic_model,
                        tokenizer_name=basic_model,
                        context_window=512,
                        max_new_tokens=128,
                        generate_kwargs={"temperature": 0.3, "do_sample": True},
                        device_map="cpu",  # Force CPU to avoid memory issues
                        model_kwargs={"low_cpu_mem_usage": True}
                    )
                    print(f"Successfully loaded final fallback: {basic_model}")
                except Exception as e3:
                    print(f"All model loading attempts failed: {e3}")
                    raise Exception("Unable to load any language model")
        
        # Define tools with real implementations
        self.tools = [
            FunctionTool.from_defaults(
                fn=self.web_search,
                name="web_search",
                description="Searches the web for current information using DuckDuckGo when questions require up-to-date knowledge"
            ),
            FunctionTool.from_defaults(
                fn=self.math_calculator,
                name="math_calculator",
                description="Performs mathematical calculations and symbolic math using SymPy when questions involve numbers or equations"
            )
        ]
        
        # Create ReAct agent with tools
        try:
            self.agent = ReActAgent.from_tools(
                tools=self.tools,
                llm=self.llm,
                verbose=True,
                max_iterations=3  # Limit iterations to prevent infinite loops
            )
            print("Local LLM Agent initialized successfully.")
        except Exception as e:
            print(f"Error creating ReAct agent: {e}")
            # Create a simple fallback agent
            self.agent = None
            print("Using fallback direct tool calling approach")

    def web_search(self, query: str) -> str:
        """Real web search using DuckDuckGo"""
        print(f"Web search triggered for: {query[:50]}...")
        
        if not DDGS:
            return "Web search unavailable - duckduckgo_search not installed"
        
        try:
            with DDGS() as ddgs:
                results = list(ddgs.text(query, max_results=5))  # Get more results
                if results:
                    formatted_results = []
                    for i, r in enumerate(results, 1):
                        title = r.get('title', 'No title')
                        body = r.get('body', 'No description')[:300]  # More context
                        url = r.get('href', '')
                        formatted_results.append(f"{i}. **{title}**\n{body}...\nSource: {url}")
                    
                    return "\n\n".join(formatted_results)
                else:
                    return f"No search results found for '{query}'. Try rephrasing your search terms."
        except Exception as e:
            print(f"Web search error: {e}")
            return f"Error during web search for '{query}': {str(e)}"

    def math_calculator(self, expression: str) -> str:
        """Safe math evaluation using SymPy"""
        print(f"Math calculation triggered for: {expression}")
        
        if not sympify:
            # Fallback to basic eval with safety checks
            try:
                # Only allow basic math operations
                allowed_chars = set('0123456789+-*/().^ ')
                if not all(c in allowed_chars for c in expression.replace(' ', '')):
                    return "Error: Only basic math operations are allowed"
                result = eval(expression.replace('^', '**'))
                return str(result)
            except Exception as e:
                return f"Error: Could not evaluate the mathematical expression - {str(e)}"
        
        try:
            # Use SymPy for safe evaluation
            result = sympify(expression).evalf()
            return str(result)
        except SympifyError as e:
            return f"Error: Could not parse the mathematical expression - {str(e)}"
        except Exception as e:
            return f"Error: Calculation failed - {str(e)}"

    def __call__(self, question: str) -> str:
        print(f"Processing question (first 50 chars): {question[:50]}...")
        
        # Enhanced reasoning approach
        question_lower = question.lower()
        
        # Check if we need to analyze files
        if any(word in question_lower for word in ['file', 'excel', 'csv', 'spreadsheet', 'data', 'attached']):
            return "I cannot access attached files in this environment. Please ensure the file is accessible via a direct URL or describe the data content directly in your question."
        
        # Check if we need web search
        needs_web_search = any(word in question_lower for word in [
            'current', 'latest', 'recent', 'today', 'news', 'who is', 'what is',
            'competition', 'winner', 'recipient', 'nationality', 'country',
            'malko', 'century', 'award', 'born', 'died'
        ])
        
        # Check if we need math calculation
        needs_calculation = any(word in question_lower for word in [
            'calculate', 'compute', 'sum', 'total', 'average', 'percentage',
            'equation', 'solve', 'math', 'number'
        ]) or any(char in question for char in '+-*/=()0123456789')
        
        try:
            if self.agent:
                # Try using the ReAct agent first
                response = self.agent.query(question)
                response_str = str(response)
                
                # Check if the response is too short or nonsensical
                if len(response_str.strip()) < 3 or response_str.strip() in ['!', '?', 'what', 'I', 'The', 'A']:
                    print("Agent gave a poor response, trying direct tool approach...")
                    return self._direct_tool_approach(question, needs_web_search, needs_calculation)
                
                return response_str
            else:
                # Use direct tool approach
                return self._direct_tool_approach(question, needs_web_search, needs_calculation)
                
        except Exception as e:
            print(f"Agent error: {str(e)}")
            print(f"Full traceback: {traceback.format_exc()}")
            # Try direct tool approach as fallback
            try:
                return self._direct_tool_approach(question, needs_web_search, needs_calculation)
            except:
                return f"I apologize, but I'm having technical difficulties processing your question. The question appears to be: {question[:100]}..."
    
    def _direct_tool_approach(self, question: str, needs_web_search: bool, needs_calculation: bool) -> str:
        """Direct tool usage when agent fails"""
        
        if needs_web_search:
            # Extract key search terms
            search_terms = []
            important_words = question.split()
            for word in important_words:
                if len(word) > 3 and word.lower() not in ['what', 'when', 'where', 'who', 'how', 'the', 'and', 'or', 'but', 'from', 'with']:
                    search_terms.append(word)
            
            search_query = ' '.join(search_terms[:5])  # Limit to 5 key terms
            print(f"Performing web search for: {search_query}")
            
            search_result = self.web_search(search_query)
            return f"Based on my web search for '{search_query}':\n\n{search_result}\n\nPlease review the search results above to find the specific information you're looking for."
        
        if needs_calculation:
            # Try to extract mathematical expressions
            import re
            # Look for mathematical expressions
            math_patterns = re.findall(r'[\d+\-*/().\s]+', question)
            for pattern in math_patterns:
                if any(char in pattern for char in '+-*/') and any(char.isdigit() for char in pattern):
                    result = self.math_calculator(pattern.strip())
                    return f"Mathematical calculation result: {result}"
        
        # Default response with better reasoning
        return f"I understand you're asking about: {question[:150]}... However, I need more specific information or context to provide an accurate answer. Could you please rephrase your question or provide additional details?"


# --- Memory cleanup function ---
def cleanup_memory():
    """Clean up GPU memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("GPU memory cleared")


# --- Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Clean memory before starting
    cleanup_memory()

    # Instantiate Agent
    try:
        agent = SmartAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        print(f"Full traceback: {traceback.format_exc()}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # Run Agent on all questions
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data, 1):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        print(f"Processing question {i}/{len(questions_data)}: {task_id}")
        
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
            })
            print(f"โœ… Completed question {i}: {task_id}")
            
            # Clean memory after each question
            if i % 5 == 0:  # Every 5 questions
                cleanup_memory()
                
        except Exception as e:
            print(f"โŒ Error running agent on task {task_id}: {e}")
            error_answer = f"AGENT ERROR: {str(e)}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": error_answer
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare submission
    submission_data = {
        "username": username.strip(), 
        "agent_code": agent_code, 
        "answers": answers_payload
    }
    
    status_update = f"Agent finished processing. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # Submit answers
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"๐ŸŽ‰ Submission Successful!\n\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("โœ… Submission successful!")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"โŒ Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except requests.exceptions.Timeout:
        status_message = "โŒ Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except requests.exceptions.RequestException as e:
        status_message = f"โŒ Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except Exception as e:
        status_message = f"โŒ An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Gradio UI ---
with gr.Blocks(title="Local LLM Agent Evaluation") as demo:
    gr.Markdown("# ๐Ÿค– Local LLM Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. ๐Ÿ” Log in to your Hugging Face account using the button below
        2. ๐Ÿš€ Click 'Run Evaluation & Submit All Answers'
        3. โณ Wait for the local LLM to process all questions (using memory-optimized smaller model)
        4. ๐Ÿ“Š View your results and submission status
        
        **Features:**
        - ๐Ÿ” Real web search using DuckDuckGo
        - ๐Ÿงฎ Advanced math calculations with SymPy
        - ๐Ÿง  Memory-optimized language model with fallback options
        - ๐Ÿ›ก๏ธ Error handling and recovery mechanisms
        """
    )

    with gr.Row():
        gr.LoginButton()
    
    with gr.Row():
        run_button = gr.Button(
            "๐Ÿš€ Run Evaluation & Submit All Answers", 
            variant="primary", 
            size="lg"
        )
    
    status_output = gr.Textbox(
        label="๐Ÿ“‹ Run Status / Submission Result", 
        lines=8, 
        interactive=False,
        placeholder="Click the button above to start the evaluation..."
    )
    
    results_table = gr.DataFrame(
        label="๐Ÿ“Š Questions and Agent Answers", 
        wrap=True,
        interactive=False
    )

    # Wire up the button
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )


if __name__ == "__main__":
    print("\n" + "="*60)
    print("๐Ÿš€ Application Startup at", pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S"))
    print("="*60)
    
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"โœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}")
    else:
        print("โ„น๏ธ  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"โœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("โ„น๏ธ  SPACE_ID environment variable not found (running locally?).")

    print("-" * 60)
    print("๐ŸŽฏ Launching Gradio Interface for Local LLM Agent Evaluation...")
    
    # Launch without share=True for Hugging Face Spaces
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )