Spaces:
Runtime error
Runtime error
File size: 13,822 Bytes
574b6ca d591a7a 086b425 d591a7a 0f20e93 d591a7a 8c139ea 9f29ca9 8c139ea f0b3f91 8c139ea cccb073 8c139ea 9f29ca9 757ebd9 d591a7a 3db6293 cccb073 9f29ca9 cccb073 9f29ca9 e80aab9 cccb073 f0b3f91 9f29ca9 cccb073 d591a7a f0b3f91 cccb073 8c139ea cccb073 8c139ea d591a7a 25405da 8c139ea 9f29ca9 d591a7a cccb073 d591a7a cccb073 d591a7a 9f29ca9 cccb073 9f29ca9 8c139ea cccb073 9f29ca9 cccb073 9f29ca9 cccb073 d591a7a cccb073 d591a7a 8c139ea cccb073 d591a7a cccb073 d591a7a 8c139ea cccb073 d591a7a cccb073 d591a7a cccb073 8c139ea d591a7a 8c139ea cccb073 d591a7a cccb073 d591a7a bbb34b9 d591a7a cccb073 d591a7a cccb073 0f20e93 8c139ea cccb073 8c139ea cccb073 8c139ea c66203c 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 d591a7a cccb073 9f29ca9 cccb073 d591a7a 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea d591a7a 8c139ea d591a7a 8c139ea cccb073 d591a7a a8701c2 d591a7a cccb073 529a4e1 d591a7a cccb073 d591a7a 03ca047 cccb073 d591a7a cccb073 9f29ca9 d591a7a cccb073 d591a7a c66203c cccb073 d591a7a f96a820 9f29ca9 31243f4 d591a7a 9f29ca9 d591a7a 9f29ca9 eccf8e4 cccb073 c66203c d591a7a cccb073 a39e119 cccb073 d591a7a cccb073 d591a7a cccb073 8c139ea bbb34b9 d591a7a 8c139ea d591a7a f96a820 8c139ea 086b425 cccb073 d591a7a 8c139ea cccb073 8c139ea cccb073 8c139ea 03ca047 cccb073 8c139ea cccb073 8c139ea d591a7a cccb073 d591a7a cccb073 d591a7a cccb073 9f29ca9 d591a7a e80aab9 cccb073 d591a7a cccb073 d591a7a cccb073 d591a7a cccb073 d591a7a cccb073 d591a7a cccb073 d591a7a cccb073 7963312 cccb073 d591a7a cccb073 d591a7a 9f29ca9 cccb073 d591a7a cccb073 9f29ca9 cccb073 d591a7a 7963312 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea cccb073 8c139ea 9f29ca9 d591a7a 8c139ea bbb34b9 e80aab9 cccb073 9f29ca9 8c139ea cccb073 8c139ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
import pdfminer
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 4 # Reduced from 6
MAX_TOKENS = 128 # Reduced from 256
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
TIMEOUT_PER_QUESTION = 30 # 30 seconds max per question
# --- Configure Environment for Hugging Face Spaces ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
print("Loading model (CPU-optimized)...")
start_time = time.time()
# Load model with aggressive optimization
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True,
use_cache=False,
attn_implementation="eager" # Use eager attention for better CPU performance
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=True, # Changed to True for faster tokenization
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
# --- Optimized Tools ---
def web_search(query: str) -> str:
"""Search the web with timeout and result limiting"""
try:
if SERPER_API_KEY:
params = {'q': query, 'num': 2, 'hl': 'en', 'gl': 'us'}
headers = {'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json'}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params,
timeout=5 # Reduced timeout
)
results = response.json()
if 'organic' in results:
return json.dumps([f"{r['title']}: {r['snippet'][:100]}" for r in results['organic'][:2]])
return "No results found"
else:
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=2)]
return json.dumps([f"{r['title']}: {r['body'][:100]}" for r in results])
except Exception as e:
return f"Search error: {str(e)}"
def calculator(expression: str) -> str:
"""Fast mathematical evaluation"""
try:
expression = re.sub(r'[^\d+\-*/().\s]', '', expression)
result = numexpr.evaluate(expression)
return str(float(result))
except Exception as e:
return f"Calculation error: {str(e)}"
def read_pdf(file_path: str) -> str:
"""Extract text from PDF with length limit"""
try:
text = extract_text(file_path)
return text[:1000] if text else "No text found in PDF" # Reduced limit
except Exception as e:
return f"PDF read error: {str(e)}"
def read_webpage(url: str) -> str:
"""Fast webpage reading with aggressive limits"""
try:
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
response = requests.get(url, timeout=5, headers=headers) # Reduced timeout
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
return text[:1000] if text else "No text found on webpage" # Reduced limit
except Exception as e:
return f"Webpage read error: {str(e)}"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_pdf": read_pdf,
"read_webpage": read_webpage
}
# --- Optimized GAIA Agent ---
class GAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.system_prompt = (
"You are a GAIA problem solver. Tools: {web_search, calculator, read_pdf, read_webpage}.\n"
"Be concise and direct. Use tools efficiently.\n"
"Tool format: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n"
"End with: Final Answer: [exact answer]"
)
def __call__(self, question: str) -> str:
start_time = time.time()
print(f"Processing: {question[:50]}...")
try:
history = [f"Question: {question}"]
for step in range(MAX_STEPS):
# Check timeout
if time.time() - start_time > TIMEOUT_PER_QUESTION:
return "TIMEOUT: Question took too long"
prompt = self._build_prompt(history)
response = self._call_model(prompt)
if "Final Answer" in response:
answer = response.split("Final Answer:")[-1].strip()
elapsed = time.time() - start_time
print(f"Completed in {elapsed:.1f}s: {answer[:30]}...")
return answer
tool_call = self._parse_tool_call(response)
if tool_call:
tool_name, args = tool_call
observation = self._use_tool(tool_name, args)
history.append(f"Action: {tool_name}")
history.append(f"Result: {observation}")
else:
history.append(f"Thought: {response}")
# Aggressive memory cleanup
gc.collect()
return "Could not solve within step limit"
except Exception as e:
print(f"Agent error: {str(e)}")
return f"Error: {str(e)}"
def _build_prompt(self, history: List[str]) -> str:
prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n"
prompt += "<|user|>\n" + "\n".join(history) + "<|end|>\n"
prompt += "<|assistant|>"
return prompt
def _call_model(self, prompt: str) -> str:
try:
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=2048, # Reduced context
padding=False
)
generation_config = GenerationConfig(
max_new_tokens=MAX_TOKENS,
temperature=0.1, # Less randomness for faster convergence
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=False
)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
generation_config=generation_config,
attention_mask=inputs.attention_mask
)
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response.split("<|assistant|>")[-1].strip()
# Immediate cleanup
del inputs, outputs
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return response
except Exception as e:
return f"Generation error: {str(e)}"
def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
try:
json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL)
if json_match:
tool_call = json.loads(json_match.group(1))
if "tool" in tool_call and "args" in tool_call:
return tool_call["tool"], tool_call["args"]
except:
pass
return None
def _use_tool(self, tool_name: str, args: Dict) -> str:
if tool_name not in self.tools:
return f"Unknown tool: {tool_name}"
try:
result = self.tools[tool_name](**args)
return str(result)[:300] # Truncate results
except Exception as e:
return f"Tool error: {str(e)}"
# --- Optimized Evaluation Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fast evaluation with parallel processing where possible"""
space_id = os.getenv("SPACE_ID")
if not profile:
return "Please Login to Hugging Face with the button.", None
username = profile.username
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GAIA_Agent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions found.", None
print(f"Processing {len(questions_data)} questions...")
except Exception as e:
return f"Error fetching questions: {e}", None
# Process questions with progress tracking
results_log = []
answers_payload = []
total_start = time.time()
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
print(f"[{i+1}/{len(questions_data)}] Processing {task_id}...")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:80] + "..." if len(question_text) > 80 else question_text,
"Answer": submitted_answer[:100] + "..." if len(submitted_answer) > 100 else submitted_answer
})
# Memory cleanup every few questions
if i % 3 == 0:
gc.collect()
except Exception as e:
error_answer = f"ERROR: {str(e)}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:80] + "..." if len(question_text) > 80 else question_text,
"Answer": error_answer
})
total_time = time.time() - total_start
print(f"All questions processed in {total_time:.1f} seconds")
if not answers_payload:
return "No answers generated.", pd.DataFrame(results_log)
# Submit results
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"β
Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Processing Time: {total_time:.1f}s\n"
f"Message: {result_data.get('message', 'No message')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
error_msg = f"β Submission Failed: {str(e)}"
results_df = pd.DataFrame(results_log)
return error_msg, results_df
# --- Gradio Interface ---
with gr.Blocks(title="GAIA Agent - Fast Mode") as demo:
gr.Markdown("# π GAIA Agent Evaluation (Optimized)")
gr.Markdown(
"""
**Fast Mode Optimizations:**
- Reduced max steps: 4 per question
- Shorter token generation: 128 tokens max
- 30s timeout per question
- Aggressive memory management
**Usage:** Login β Click Run β View Results
"""
)
with gr.Row():
gr.LoginButton()
with gr.Row():
run_button = gr.Button("πββοΈ Run Fast Evaluation", variant="primary", size="lg")
with gr.Row():
status_output = gr.Textbox(
label="π Status & Results",
lines=6,
interactive=False,
placeholder="Ready to run evaluation..."
)
with gr.Row():
results_table = gr.DataFrame(
label="π Questions & Answers",
wrap=True,
interactive=False
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table],
show_progress=True
)
if __name__ == "__main__":
print("π GAIA Agent Fast Mode Starting...")
print(f"βοΈ Max Steps: {MAX_STEPS}, Max Tokens: {MAX_TOKENS}")
print(f"β±οΈ Timeout per question: {TIMEOUT_PER_QUESTION}s")
demo.launch(
debug=False,
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |