File size: 13,822 Bytes
574b6ca
 
 
d591a7a
086b425
d591a7a
 
0f20e93
d591a7a
 
 
 
 
8c139ea
9f29ca9
8c139ea
f0b3f91
 
8c139ea
cccb073
 
8c139ea
9f29ca9
 
 
757ebd9
d591a7a
3db6293
cccb073
 
9f29ca9
cccb073
9f29ca9
 
 
 
 
e80aab9
cccb073
f0b3f91
9f29ca9
cccb073
d591a7a
 
f0b3f91
cccb073
 
 
 
 
8c139ea
 
 
 
cccb073
8c139ea
d591a7a
25405da
8c139ea
 
9f29ca9
d591a7a
 
 
cccb073
d591a7a
cccb073
d591a7a
9f29ca9
cccb073
 
9f29ca9
 
 
8c139ea
cccb073
9f29ca9
 
 
cccb073
9f29ca9
 
 
cccb073
 
d591a7a
 
 
 
cccb073
d591a7a
8c139ea
 
cccb073
d591a7a
 
 
 
cccb073
d591a7a
8c139ea
cccb073
d591a7a
 
 
 
cccb073
d591a7a
cccb073
 
8c139ea
d591a7a
8c139ea
 
 
 
 
cccb073
d591a7a
 
 
 
 
 
 
 
 
 
cccb073
d591a7a
bbb34b9
d591a7a
 
cccb073
 
 
 
d591a7a
 
 
cccb073
 
0f20e93
8c139ea
cccb073
 
8c139ea
cccb073
 
 
 
 
8c139ea
c66203c
8c139ea
 
cccb073
 
8c139ea
 
 
 
 
 
cccb073
 
8c139ea
cccb073
 
 
 
8c139ea
cccb073
8c139ea
 
cccb073
 
d591a7a
cccb073
9f29ca9
cccb073
d591a7a
 
 
 
8c139ea
 
 
 
 
cccb073
 
8c139ea
 
 
 
cccb073
8c139ea
 
 
cccb073
8c139ea
 
 
 
cccb073
 
 
8c139ea
 
 
 
 
cccb073
8c139ea
cccb073
8c139ea
 
 
 
 
d591a7a
8c139ea
d591a7a
 
 
 
8c139ea
 
cccb073
 
d591a7a
a8701c2
d591a7a
 
cccb073
529a4e1
d591a7a
 
cccb073
d591a7a
 
03ca047
cccb073
d591a7a
cccb073
9f29ca9
d591a7a
cccb073
d591a7a
c66203c
cccb073
d591a7a
 
 
 
f96a820
9f29ca9
31243f4
d591a7a
9f29ca9
d591a7a
 
9f29ca9
eccf8e4
cccb073
c66203c
d591a7a
 
cccb073
 
a39e119
cccb073
d591a7a
cccb073
d591a7a
 
cccb073
8c139ea
 
bbb34b9
d591a7a
8c139ea
d591a7a
f96a820
8c139ea
086b425
cccb073
d591a7a
 
8c139ea
 
cccb073
 
8c139ea
 
cccb073
 
8c139ea
 
03ca047
cccb073
8c139ea
 
 
cccb073
 
8c139ea
d591a7a
cccb073
 
 
d591a7a
cccb073
d591a7a
cccb073
9f29ca9
 
 
 
 
d591a7a
e80aab9
cccb073
d591a7a
 
cccb073
d591a7a
cccb073
d591a7a
cccb073
d591a7a
cccb073
 
d591a7a
cccb073
d591a7a
 
cccb073
7963312
cccb073
d591a7a
cccb073
d591a7a
9f29ca9
cccb073
 
d591a7a
 
cccb073
 
 
 
 
9f29ca9
cccb073
d591a7a
 
7963312
8c139ea
 
 
 
cccb073
8c139ea
 
 
cccb073
 
8c139ea
cccb073
8c139ea
 
 
 
cccb073
8c139ea
 
 
9f29ca9
d591a7a
 
8c139ea
 
bbb34b9
e80aab9
 
cccb073
 
 
9f29ca9
8c139ea
cccb073
8c139ea
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
import pdfminer
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed

# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 4  # Reduced from 6
MAX_TOKENS = 128  # Reduced from 256
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
TIMEOUT_PER_QUESTION = 30  # 30 seconds max per question

# --- Configure Environment for Hugging Face Spaces ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"

print("Loading model (CPU-optimized)...")
start_time = time.time()

# Load model with aggressive optimization
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
    torch_dtype=torch.float32,
    device_map="cpu",
    low_cpu_mem_usage=True,
    use_cache=False,
    attn_implementation="eager"  # Use eager attention for better CPU performance
)

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME, 
    use_fast=True,  # Changed to True for faster tokenization
    trust_remote_code=True
)

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")

# --- Optimized Tools ---
def web_search(query: str) -> str:
    """Search the web with timeout and result limiting"""
    try:
        if SERPER_API_KEY:
            params = {'q': query, 'num': 2, 'hl': 'en', 'gl': 'us'}
            headers = {'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json'}
            response = requests.post(
                'https://google.serper.dev/search',
                headers=headers,
                json=params,
                timeout=5  # Reduced timeout
            )
            results = response.json()
            if 'organic' in results:
                return json.dumps([f"{r['title']}: {r['snippet'][:100]}" for r in results['organic'][:2]])
            return "No results found"
        else:
            with DDGS() as ddgs:
                results = [r for r in ddgs.text(query, max_results=2)]
                return json.dumps([f"{r['title']}: {r['body'][:100]}" for r in results])
    except Exception as e:
        return f"Search error: {str(e)}"

def calculator(expression: str) -> str:
    """Fast mathematical evaluation"""
    try:
        expression = re.sub(r'[^\d+\-*/().\s]', '', expression)
        result = numexpr.evaluate(expression)
        return str(float(result))
    except Exception as e:
        return f"Calculation error: {str(e)}"

def read_pdf(file_path: str) -> str:
    """Extract text from PDF with length limit"""
    try:
        text = extract_text(file_path)
        return text[:1000] if text else "No text found in PDF"  # Reduced limit
    except Exception as e:
        return f"PDF read error: {str(e)}"

def read_webpage(url: str) -> str:
    """Fast webpage reading with aggressive limits"""
    try:
        headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
        response = requests.get(url, timeout=5, headers=headers)  # Reduced timeout
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        
        for script in soup(["script", "style"]):
            script.decompose()
            
        text = soup.get_text(separator=' ', strip=True)
        return text[:1000] if text else "No text found on webpage"  # Reduced limit
    except Exception as e:
        return f"Webpage read error: {str(e)}"

TOOLS = {
    "web_search": web_search,
    "calculator": calculator,
    "read_pdf": read_pdf,
    "read_webpage": read_webpage
}

# --- Optimized GAIA Agent ---
class GAIA_Agent:
    def __init__(self):
        self.tools = TOOLS
        self.system_prompt = (
            "You are a GAIA problem solver. Tools: {web_search, calculator, read_pdf, read_webpage}.\n"
            "Be concise and direct. Use tools efficiently.\n"
            "Tool format: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n"
            "End with: Final Answer: [exact answer]"
        )

    def __call__(self, question: str) -> str:
        start_time = time.time()
        print(f"Processing: {question[:50]}...")
        
        try:
            history = [f"Question: {question}"]
            
            for step in range(MAX_STEPS):
                # Check timeout
                if time.time() - start_time > TIMEOUT_PER_QUESTION:
                    return "TIMEOUT: Question took too long"
                
                prompt = self._build_prompt(history)
                response = self._call_model(prompt)
                
                if "Final Answer" in response:
                    answer = response.split("Final Answer:")[-1].strip()
                    elapsed = time.time() - start_time
                    print(f"Completed in {elapsed:.1f}s: {answer[:30]}...")
                    return answer
                    
                tool_call = self._parse_tool_call(response)
                if tool_call:
                    tool_name, args = tool_call
                    observation = self._use_tool(tool_name, args)
                    history.append(f"Action: {tool_name}")
                    history.append(f"Result: {observation}")
                else:
                    history.append(f"Thought: {response}")
                
                # Aggressive memory cleanup
                gc.collect()
            
            return "Could not solve within step limit"
            
        except Exception as e:
            print(f"Agent error: {str(e)}")
            return f"Error: {str(e)}"

    def _build_prompt(self, history: List[str]) -> str:
        prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n"
        prompt += "<|user|>\n" + "\n".join(history) + "<|end|>\n"
        prompt += "<|assistant|>"
        return prompt

    def _call_model(self, prompt: str) -> str:
        try:
            inputs = tokenizer(
                prompt, 
                return_tensors="pt", 
                truncation=True,
                max_length=2048,  # Reduced context
                padding=False
            )
            
            generation_config = GenerationConfig(
                max_new_tokens=MAX_TOKENS,
                temperature=0.1,  # Less randomness for faster convergence
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                use_cache=False
            )
            
            with torch.no_grad():
                outputs = model.generate(
                    inputs.input_ids,
                    generation_config=generation_config,
                    attention_mask=inputs.attention_mask
                )
            
            full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            response = full_response.split("<|assistant|>")[-1].strip()
            
            # Immediate cleanup
            del inputs, outputs
            torch.cuda.empty_cache() if torch.cuda.is_available() else None
            
            return response
            
        except Exception as e:
            return f"Generation error: {str(e)}"

    def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
        try:
            json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL)
            if json_match:
                tool_call = json.loads(json_match.group(1))
                if "tool" in tool_call and "args" in tool_call:
                    return tool_call["tool"], tool_call["args"]
        except:
            pass
        return None

    def _use_tool(self, tool_name: str, args: Dict) -> str:
        if tool_name not in self.tools:
            return f"Unknown tool: {tool_name}"
        
        try:
            result = self.tools[tool_name](**args)
            return str(result)[:300]  # Truncate results
        except Exception as e:
            return f"Tool error: {str(e)}"

# --- Optimized Evaluation Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Fast evaluation with parallel processing where possible"""
    space_id = os.getenv("SPACE_ID")
    
    if not profile:
        return "Please Login to Hugging Face with the button.", None

    username = profile.username
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GAIA_Agent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch Questions
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "No questions found.", None
        print(f"Processing {len(questions_data)} questions...")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # Process questions with progress tracking
    results_log = []
    answers_payload = []
    total_start = time.time()
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            continue
            
        try:
            print(f"[{i+1}/{len(questions_data)}] Processing {task_id}...")
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:80] + "..." if len(question_text) > 80 else question_text, 
                "Answer": submitted_answer[:100] + "..." if len(submitted_answer) > 100 else submitted_answer
            })
            
            # Memory cleanup every few questions
            if i % 3 == 0:
                gc.collect()
                
        except Exception as e:
            error_answer = f"ERROR: {str(e)}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:80] + "..." if len(question_text) > 80 else question_text, 
                "Answer": error_answer
            })

    total_time = time.time() - total_start
    print(f"All questions processed in {total_time:.1f} seconds")

    if not answers_payload:
        return "No answers generated.", pd.DataFrame(results_log)

    # Submit results
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"βœ… Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Processing Time: {total_time:.1f}s\n"
            f"Message: {result_data.get('message', 'No message')}"
        )
        
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except Exception as e:
        error_msg = f"❌ Submission Failed: {str(e)}"
        results_df = pd.DataFrame(results_log)
        return error_msg, results_df

# --- Gradio Interface ---
with gr.Blocks(title="GAIA Agent - Fast Mode") as demo:
    gr.Markdown("# πŸš€ GAIA Agent Evaluation (Optimized)")
    gr.Markdown(
        """
        **Fast Mode Optimizations:**
        - Reduced max steps: 4 per question
        - Shorter token generation: 128 tokens max
        - 30s timeout per question
        - Aggressive memory management
        
        **Usage:** Login β†’ Click Run β†’ View Results
        """
    )

    with gr.Row():
        gr.LoginButton()
    
    with gr.Row():
        run_button = gr.Button("πŸƒβ€β™‚οΈ Run Fast Evaluation", variant="primary", size="lg")
    
    with gr.Row():
        status_output = gr.Textbox(
            label="πŸ“Š Status & Results", 
            lines=6, 
            interactive=False,
            placeholder="Ready to run evaluation..."
        )
    
    with gr.Row():
        results_table = gr.DataFrame(
            label="πŸ“ Questions & Answers", 
            wrap=True,
            interactive=False
        )
    
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table],
        show_progress=True
    )

if __name__ == "__main__":
    print("πŸš€ GAIA Agent Fast Mode Starting...")
    print(f"βš™οΈ  Max Steps: {MAX_STEPS}, Max Tokens: {MAX_TOKENS}")
    print(f"⏱️  Timeout per question: {TIMEOUT_PER_QUESTION}s")
    
    demo.launch(
        debug=False,
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )