Spaces:
Runtime error
Runtime error
File size: 11,331 Bytes
574b6ca d591a7a 086b425 d591a7a 0f20e93 d591a7a 8c139ea 9f29ca9 8c139ea f0b3f91 8c139ea d3c0517 8c139ea 9f29ca9 757ebd9 d3c0517 3db6293 d3c0517 9f29ca9 d3c0517 9f29ca9 d3c0517 9f29ca9 e80aab9 d3c0517 f0b3f91 9f29ca9 d3c0517 d591a7a f0b3f91 cccb073 d3c0517 8c139ea d3c0517 d591a7a 25405da 8c139ea 9f29ca9 d3c0517 d591a7a d3c0517 d591a7a d3c0517 d591a7a 9f29ca9 d3c0517 cccb073 9f29ca9 8c139ea d3c0517 9f29ca9 d3c0517 9f29ca9 d3c0517 d591a7a d3c0517 d591a7a d3c0517 cccb073 d3c0517 d591a7a d3c0517 d591a7a 8c139ea d3c0517 d591a7a d3c0517 d591a7a d3c0517 d591a7a 8c139ea d3c0517 d591a7a d3c0517 d591a7a d3c0517 bbb34b9 d591a7a d3c0517 d591a7a cccb073 0f20e93 8c139ea d3c0517 cccb073 8c139ea cccb073 d3c0517 cccb073 d3c0517 c66203c d3c0517 8c139ea d3c0517 cccb073 d3c0517 8c139ea d3c0517 8c139ea d3c0517 d591a7a d3c0517 8c139ea d3c0517 8c139ea d3c0517 8c139ea d3c0517 cccb073 8c139ea d3c0517 8c139ea cccb073 d3c0517 cccb073 8c139ea d3c0517 8c139ea cccb073 8c139ea d3c0517 8c139ea d3c0517 d591a7a d3c0517 d591a7a d3c0517 cccb073 d3c0517 03ca047 d3c0517 d591a7a cccb073 d3c0517 c66203c cccb073 d3c0517 d591a7a d3c0517 eccf8e4 d3c0517 a39e119 d3c0517 d591a7a d3c0517 8c139ea d3c0517 bbb34b9 d3c0517 8c139ea d3c0517 f96a820 8c139ea d3c0517 086b425 d3c0517 8c139ea 03ca047 d3c0517 8c139ea d3c0517 cccb073 e80aab9 d3c0517 cccb073 d3c0517 d591a7a cccb073 d3c0517 cccb073 7963312 d3c0517 d591a7a d3c0517 7963312 d3c0517 8c139ea d3c0517 8c139ea d3c0517 9f29ca9 d3c0517 e80aab9 d3c0517 9f29ca9 8c139ea d3c0517 8c139ea d3c0517 8c139ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
import pdfminer
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc
import warnings
# Suppress warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- Constants (ULTRA FAST MODE) ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 3 # Reduced to 3
MAX_TOKENS = 64 # Very short responses
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
TIMEOUT_PER_QUESTION = 15 # 15 seconds max
MAX_CONTEXT = 1024 # Very short context
# --- Configure Environment ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
print("Loading model (ULTRA FAST mode)...")
start_time = time.time()
# Minimal model loading
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True,
use_cache=False
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=True,
trust_remote_code=True,
padding_side="left"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Pre-compile generation config
GENERATION_CONFIG = GenerationConfig(
max_new_tokens=MAX_TOKENS,
temperature=0.3,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=False,
repetition_penalty=1.1
)
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
# --- Lightning Fast Tools ---
def web_search(query: str) -> str:
"""Ultra-fast web search"""
try:
if SERPER_API_KEY:
params = {'q': query[:100], 'num': 1} # Single result
headers = {'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json'}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params,
timeout=3
)
results = response.json()
if 'organic' in results and results['organic']:
return f"{results['organic'][0]['title']}: {results['organic'][0]['snippet'][:200]}"
return "No results"
else:
with DDGS() as ddgs:
for result in ddgs.text(query, max_results=1):
return f"{result['title']}: {result['body'][:200]}"
return "No results"
except:
return "Search failed"
def calculator(expression: str) -> str:
"""Lightning calculator"""
try:
clean_expr = re.sub(r'[^\d+\-*/().\s]', '', str(expression))
if not clean_expr.strip():
return "Invalid expression"
result = eval(clean_expr) # Simple eval for speed
return str(float(result))
except:
return "Calc error"
def read_pdf(file_path: str) -> str:
"""Fast PDF reader"""
try:
text = extract_text(file_path)
return text[:500] if text else "No PDF text"
except:
return "PDF error"
def read_webpage(url: str) -> str:
"""Fast webpage reader"""
try:
response = requests.get(url, timeout=3, headers={'User-Agent': 'Bot'})
soup = BeautifulSoup(response.text, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
return text[:500] if text else "No webpage text"
except:
return "Webpage error"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_pdf": read_pdf,
"read_webpage": read_webpage
}
# --- Ultra Fast Agent ---
class FastGAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.prompt_template = (
"<|system|>You solve GAIA questions fast. Tools: web_search, calculator, read_pdf, read_webpage.\n"
"Format: ```json\n{\"tool\": \"name\", \"args\": {\"key\": \"value\"}}```\n"
"Always end with: Final Answer: [answer]<|end|>\n"
"<|user|>{history}<|end|>\n<|assistant|>"
)
def __call__(self, question: str) -> str:
start_time = time.time()
try:
history = f"Question: {question}"
for step in range(MAX_STEPS):
if time.time() - start_time > TIMEOUT_PER_QUESTION:
return "TIMEOUT"
response = self._fast_generate(history)
# Quick final answer check
if "Final Answer:" in response:
answer = response.split("Final Answer:")[-1].strip().split('\n')[0]
return answer[:200] # Limit answer length
# Quick tool parsing
tool_result = self._quick_tool_use(response)
if tool_result:
history += f"\nAction: {tool_result}"
else:
history += f"\nThought: {response[:100]}"
# Keep history short
if len(history) > 800:
history = history[-800:]
return "No solution found"
except Exception as e:
return f"Error: {str(e)[:50]}"
def _fast_generate(self, history: str) -> str:
try:
prompt = self.prompt_template.format(history=history)
# Fast tokenization
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=MAX_CONTEXT,
padding=False
)
# Fast generation
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
generation_config=GENERATION_CONFIG,
attention_mask=inputs.attention_mask
)
# Fast decoding
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("<|assistant|>")[-1].strip()
# Immediate cleanup
del inputs, outputs
gc.collect()
return response
except Exception as e:
return f"Gen error: {str(e)}"
def _quick_tool_use(self, text: str) -> str:
try:
# Quick JSON extraction
json_match = re.search(r'```json\s*({[^}]*})\s*```', text)
if not json_match:
return ""
tool_data = json.loads(json_match.group(1))
tool_name = tool_data.get("tool", "")
args = tool_data.get("args", {})
if tool_name in self.tools:
result = self.tools[tool_name](**args)
return f"Used {tool_name}: {str(result)[:150]}"
except:
pass
return ""
# --- Lightning Fast Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile:
return "β Please login first", None
username = profile.username
# Quick setup
agent = FastGAIA_Agent()
api_url = DEFAULT_API_URL
space_id = os.getenv("SPACE_ID", "unknown")
print(f"π ULTRA FAST mode - User: {username}")
# Fetch questions quickly
try:
response = requests.get(f"{api_url}/questions", timeout=10)
questions = response.json()
print(f"π Got {len(questions)} questions")
except Exception as e:
return f"β Failed to get questions: {e}", None
# Process at lightning speed
results = []
answers = []
start_time = time.time()
for i, item in enumerate(questions):
task_id = item.get("task_id")
question = item.get("question", "")
if not task_id:
continue
print(f"β‘ [{i+1}/{len(questions)}] {task_id[:8]}...")
try:
answer = agent(question)
answers.append({"task_id": task_id, "submitted_answer": answer})
results.append({
"ID": task_id[:8],
"Question": question[:60] + "...",
"Answer": answer[:80] + "..." if len(answer) > 80 else answer
})
except Exception as e:
error_ans = f"ERROR: {str(e)[:30]}"
answers.append({"task_id": task_id, "submitted_answer": error_ans})
results.append({
"ID": task_id[:8],
"Question": question[:60] + "...",
"Answer": error_ans
})
# Quick memory cleanup
if i % 5 == 0:
gc.collect()
total_time = time.time() - start_time
print(f"β±οΈ Completed in {total_time:.1f}s ({total_time/len(questions):.1f}s per question)")
# Submit results
try:
submission = {
"username": username,
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers
}
response = requests.post(f"{api_url}/submit", json=submission, timeout=30)
result = response.json()
status = (
f"π― ULTRA FAST RESULTS\n"
f"π€ User: {result.get('username', username)}\n"
f"π Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n"
f"β±οΈ Time: {total_time:.1f}s ({total_time/len(questions):.1f}s/question)\n"
f"π¬ {result.get('message', 'Completed!')}"
)
return status, pd.DataFrame(results)
except Exception as e:
error_status = f"β Submission failed: {str(e)}\nβ±οΈ Processing time: {total_time:.1f}s"
return error_status, pd.DataFrame(results)
# --- Ultra Simple UI ---
with gr.Blocks(title="GAIA Agent - ULTRA FAST") as demo:
gr.Markdown("# β‘ GAIA Agent - ULTRA FAST MODE")
gr.Markdown("**Speed settings:** 3 steps max β’ 64 tokens β’ 15s timeout β’ Lightning tools")
gr.LoginButton()
run_btn = gr.Button("π RUN ULTRA FAST", variant="primary", size="lg")
status = gr.Textbox(label="π Results", lines=6, interactive=False)
table = gr.DataFrame(label="π Answers", interactive=False)
run_btn.click(run_and_submit_all, outputs=[status, table], show_progress=True)
if __name__ == "__main__":
print("β‘ ULTRA FAST GAIA Agent Starting...")
print(f"βοΈ {MAX_STEPS} steps, {MAX_TOKENS} tokens, {TIMEOUT_PER_QUESTION}s timeout")
demo.launch(
share=True, # Added share=True for public link
server_name="0.0.0.0",
server_port=7860,
debug=False,
show_error=True
) |