Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| from smolagents import CodeAgent, InferenceClientModel | |
| from smolagents.tools.serper import SerperSearchTool # make sure this path is correct | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| serper_api_key = os.getenv("SERPER_API_KEY") | |
| # --- Basic Agent Definition --- | |
| class BasicAgent: | |
| def __init__(self): | |
| serper_api_key = os.getenv("SERPER_API_KEY") | |
| if not serper_api_key: | |
| raise ValueError("Missing SERPER_API_KEY in environment variables.") | |
| search_tool = SerperSearchTool(api_key=serper_api_key) | |
| model = InferenceClientModel() | |
| self.agent = CodeAgent( | |
| model=model, | |
| tools=[search_tool], | |
| ) | |
| def __call__(self, question: str) -> str: | |
| print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| try: | |
| answer = self.agent.run(question) | |
| print(f"Agent returned answer: {answer}") | |
| return answer | |
| except Exception as e: | |
| print(f"Error running agent: {e}") | |
| return f"AGENT ERROR: {e}" | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| space_id = os.getenv("SPACE_ID") | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # Instantiate Agent | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response: {e}", None | |
| except Exception as e: | |
| print(f"Unexpected error: {e}") | |
| return f"Unexpected error fetching questions: {e}", None | |
| # Run Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # Prepare Submission | |
| submission_data = { | |
| "username": username.strip(), | |
| "agent_code": agent_code, | |
| "answers": answers_payload | |
| } | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # Submit Answers | |
| print(f"Submitting to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"HTTP {e.response.status_code}: " | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f"{error_json.get('detail', e.response.text)}" | |
| except: | |
| error_detail += f"{e.response.text[:500]}" | |
| print(error_detail) | |
| return f"Submission Failed: {error_detail}", pd.DataFrame(results_log) | |
| except requests.exceptions.Timeout: | |
| return "Submission Failed: Request timed out.", pd.DataFrame(results_log) | |
| except requests.exceptions.RequestException as e: | |
| return f"Submission Failed: Network error - {e}", pd.DataFrame(results_log) | |
| except Exception as e: | |
| return f"Unexpected error during submission: {e}", pd.DataFrame(results_log) | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Clone this space and modify the code to define your agent's logic, tools, and dependencies. | |
| 2. Log in using the button below. Your Hugging Face username is required for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to test your agent and get a score. | |
| --- | |
| **Note:** The submission process may take time. You are encouraged to optimize your implementation. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| # --- Entry Point --- | |
| if __name__ == "__main__": | |
| print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
| space_host = os.getenv("SPACE_HOST") | |
| space_id = os.getenv("SPACE_ID") | |
| if space_host: | |
| print(f"✅ SPACE_HOST: {space_host}") | |
| print(f" Runtime URL: https://{space_host}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST not found (running locally?).") | |
| if space_id: | |
| print(f"✅ SPACE_ID: {space_id}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID not found (running locally?).") | |
| print("-" * (60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |