Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import json | |
import re | |
import numexpr | |
import pandas as pd | |
import time | |
import math | |
import pdfminer | |
from ctransformers import AutoModelForCausalLM | |
from duckduckgo_search import DDGS | |
from pdfminer.high_level import extract_text | |
from bs4 import BeautifulSoup | |
import html2text | |
from typing import Dict, Any, List, Tuple, Callable | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
MAX_STEPS = 6 # Limit reasoning steps for performance | |
MAX_TOKENS = 256 # Limit token generation | |
MODEL_NAME = "TheBloke/phi-3-mini-128k-instruct-GGUF" | |
MODEL_FILE = "phi-3-mini-128k-instruct.Q4_K_M.gguf" | |
# --- Load Quantized Model --- | |
print("Loading quantized model...") | |
start_time = time.time() | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
model_file=MODEL_FILE, | |
model_type="phi3", | |
gpu_layers=0, # CPU only | |
context_length=4096 | |
) | |
load_time = time.time() - start_time | |
print(f"Model loaded in {load_time:.2f} seconds") | |
# --- Tools for GAIA Agent --- | |
def web_search(query: str) -> str: | |
"""Search the web using DuckDuckGo""" | |
try: | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=3)] | |
return json.dumps(results) | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
def calculator(expression: str) -> str: | |
"""Evaluate mathematical expressions safely""" | |
try: | |
return str(numexpr.evaluate(expression)) | |
except Exception as e: | |
return f"Calculation error: {str(e)}" | |
def read_pdf(file_path: str) -> str: | |
"""Extract text from PDF files""" | |
try: | |
return extract_text(file_path) | |
except Exception as e: | |
return f"PDF read error: {str(e)}" | |
def read_webpage(url: str) -> str: | |
"""Fetch and extract text from web pages""" | |
try: | |
response = requests.get(url, timeout=10) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
return soup.get_text(separator=' ', strip=True)[:2000] # Limit text | |
except Exception as e: | |
return f"Webpage read error: {str(e)}" | |
TOOLS = { | |
"web_search": web_search, | |
"calculator": calculator, | |
"read_pdf": read_pdf, | |
"read_webpage": read_webpage | |
} | |
# --- GAIA Agent Implementation --- | |
class GAIA_Agent: | |
def __init__(self): | |
self.tools = TOOLS | |
self.history = [] | |
self.system_prompt = ( | |
"You are an expert GAIA problem solver. Use these tools: {web_search, calculator, read_pdf, read_webpage}.\n" | |
"Guidelines:\n" | |
"1. Think step-by-step. Explain reasoning\n" | |
"2. Use tools for calculations, searches, or file operations\n" | |
"3. Tools must be called as: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n" | |
"4. Final Answer must be exact and standalone\n\n" | |
"Example:\n" | |
"Question: \"What's the population density of France? (File: france_data.pdf)\"\n" | |
"Thought: Need population and area. Read PDF first.\n" | |
"Action: ```json\n{'tool': 'read_pdf', 'args': {'file_path': 'france_data.pdf'}}```\n" | |
"Observation: Population: 67.8M, Area: 643,801 km²\n" | |
"Thought: Now calculate density: 67,800,000 / 643,801\n" | |
"Action: ```json\n{'tool': 'calculator', 'args': {'expression': '67800000 / 643801'}}```\n" | |
"Observation: 105.32\n" | |
"Final Answer: 105.32 people/km²" | |
) | |
def __call__(self, question: str) -> str: | |
print(f"\nProcessing: {question[:80]}...") | |
self.history = [f"Question: {question}"] | |
for step in range(MAX_STEPS): | |
prompt = self._build_prompt() | |
response = self._call_model(prompt) | |
if "Final Answer" in response: | |
answer = response.split("Final Answer:")[-1].strip() | |
print(f"Final Answer: {answer}") | |
return answer | |
tool_call = self._parse_tool_call(response) | |
if tool_call: | |
tool_name, args = tool_call | |
observation = self._use_tool(tool_name, args) | |
self.history.append(f"Observation: {observation}") | |
else: | |
self.history.append(f"Thought: {response}") | |
return "Agent couldn't find solution within step limit" | |
def _build_prompt(self) -> str: | |
prompt = f"<|system|>\n{self.system_prompt}<|end|>\n" | |
prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n" | |
prompt += "<|assistant|>" | |
return prompt | |
def _call_model(self, prompt: str) -> str: | |
start_time = time.time() | |
response = model( | |
prompt, | |
max_new_tokens=MAX_TOKENS, | |
temperature=0.01, | |
stop=["<|end|>", "Observation:", "```"] | |
) | |
gen_time = time.time() - start_time | |
print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...") | |
return response | |
def _parse_tool_call(self, text: str) -> Tuple[str, Dict] or None: | |
try: | |
json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL) | |
if json_match: | |
tool_call = json.loads(json_match.group(1)) | |
return tool_call["tool"], tool_call["args"] | |
except Exception as e: | |
print(f"Tool parse error: {str(e)}") | |
return None | |
def _use_tool(self, tool_name: str, args: Dict) -> str: | |
if tool_name not in self.tools: | |
return f"Error: Unknown tool {tool_name}" | |
print(f"Using tool: {tool_name}({args})") | |
try: | |
start_time = time.time() | |
result = self.tools[tool_name](**args) | |
exec_time = time.time() - start_time | |
print(f"Tool executed in {exec_time:.2f}s") | |
return str(result)[:500] # Truncate long outputs | |
except Exception as e: | |
return f"Tool error: {str(e)}" | |
# --- Evaluation Runner --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
# ... [Keep the original run_and_submit_all function structure] ... | |
# Only change the agent initialization: | |
try: | |
agent = GAIA_Agent() # Use our custom agent | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# ... [rest of the function remains unchanged] ... | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
# ... [Keep the original Gradio interface] ... | |
# Only add resource monitoring: | |
gr.Markdown(f"**Resource Info:** Using {MODEL_FILE} | Max steps: {MAX_STEPS} | Max tokens: {MAX_TOKENS}") | |
# Add a clear button for history | |
clear_btn = gr.Button("Clear History") | |
clear_btn.click(lambda: [None, None], outputs=[status_output, results_table]) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |