Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| import json | |
| import re | |
| import time | |
| from typing import List, Dict, Any, Optional | |
| from datetime import datetime | |
| import threading | |
| import queue | |
| from ctransformers import AutoModelForCausalLM | |
| import logging | |
| # Setup logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| class WebSearchTool: | |
| """Web search tool using Serper API for real-time information retrieval""" | |
| def __init__(self, api_key: str): | |
| self.api_key = api_key | |
| self.base_url = "https://google.serper.dev/search" | |
| def search(self, query: str, num_results: int = 5) -> Dict[str, Any]: | |
| """Perform web search and return structured results""" | |
| try: | |
| headers = { | |
| 'X-API-KEY': self.api_key, | |
| 'Content-Type': 'application/json' | |
| } | |
| payload = { | |
| 'q': query, | |
| 'num': num_results, | |
| 'gl': 'us', | |
| 'hl': 'en' | |
| } | |
| response = requests.post(self.base_url, json=payload, headers=headers, timeout=10) | |
| response.raise_for_status() | |
| data = response.json() | |
| # Extract and format results | |
| results = [] | |
| if 'organic' in data: | |
| for item in data['organic'][:num_results]: | |
| results.append({ | |
| 'title': item.get('title', ''), | |
| 'snippet': item.get('snippet', ''), | |
| 'link': item.get('link', ''), | |
| 'position': item.get('position', 0) | |
| }) | |
| return { | |
| 'success': True, | |
| 'results': results, | |
| 'query': query, | |
| 'total_results': len(results) | |
| } | |
| except Exception as e: | |
| logger.error(f"Web search error: {e}") | |
| return { | |
| 'success': False, | |
| 'error': str(e), | |
| 'results': [], | |
| 'query': query, | |
| 'total_results': 0 | |
| } | |
| class CalculatorTool: | |
| """Enhanced calculator tool for mathematical operations""" | |
| def calculate(self, expression: str) -> Dict[str, Any]: | |
| """Safely evaluate mathematical expressions""" | |
| try: | |
| # Clean the expression | |
| expression = expression.strip() | |
| # Replace common mathematical functions | |
| expression = expression.replace('^', '**') # Power operator | |
| expression = re.sub(r'\b(\d+)x(\d+)\b', r'\1*\2', expression) # Handle multiplication like 5x3 | |
| # Allow only safe mathematical operations | |
| allowed_chars = set('0123456789+-*/().,eE pi') | |
| allowed_funcs = ['abs', 'round', 'min', 'max', 'sum', 'pow', 'sqrt'] | |
| # Basic safety check | |
| if any(char.isalpha() and char not in 'pie' for char in expression): | |
| # Check if it contains allowed function names | |
| import math | |
| safe_dict = { | |
| "__builtins__": {}, | |
| "abs": abs, "round": round, "min": min, "max": max, | |
| "sum": sum, "pow": pow, "sqrt": math.sqrt, | |
| "pi": math.pi, "e": math.e, | |
| "sin": math.sin, "cos": math.cos, "tan": math.tan, | |
| "log": math.log, "log10": math.log10, | |
| "exp": math.exp, "floor": math.floor, "ceil": math.ceil | |
| } | |
| result = eval(expression, safe_dict) | |
| else: | |
| result = eval(expression) | |
| return { | |
| 'success': True, | |
| 'result': result, | |
| 'expression': expression | |
| } | |
| except Exception as e: | |
| logger.error(f"Calculator error: {e}") | |
| return { | |
| 'success': False, | |
| 'error': str(e), | |
| 'expression': expression, | |
| 'result': None | |
| } | |
| class LocalLLMManager: | |
| """Manages local quantized LLM for reasoning""" | |
| def __init__(self): | |
| self.model = None | |
| self.model_loaded = False | |
| self.load_lock = threading.Lock() | |
| def load_model(self): | |
| """Load quantized model optimized for CPU inference""" | |
| with self.load_lock: | |
| if self.model_loaded: | |
| return | |
| try: | |
| logger.info("Loading quantized model...") | |
| # Use Phi-3-mini for better performance on CPU with limited resources | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| "microsoft/Phi-3-mini-4k-instruct-gguf", | |
| model_file="Phi-3-mini-4k-instruct-q4.gguf", | |
| model_type="phi3", | |
| gpu_layers=0, # CPU only | |
| context_length=3072, # Reduced context to save memory | |
| max_new_tokens=512, | |
| temperature=0.1, | |
| top_p=0.9, | |
| repetition_penalty=1.1 | |
| ) | |
| self.model_loaded = True | |
| logger.info("Model loaded successfully") | |
| except Exception as e: | |
| logger.error(f"Error loading model: {e}") | |
| # Fallback to a smaller model if Phi-3 fails | |
| try: | |
| logger.info("Trying fallback model...") | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", | |
| model_file="tinyllama-1.1b-chat-v1.0.q4_k_m.gguf", | |
| model_type="llama", | |
| gpu_layers=0, | |
| context_length=2048, | |
| max_new_tokens=256 | |
| ) | |
| self.model_loaded = True | |
| logger.info("Fallback model loaded successfully") | |
| except Exception as e2: | |
| logger.error(f"Fallback model also failed: {e2}") | |
| raise | |
| def generate(self, prompt: str, max_tokens: int = 256) -> str: | |
| """Generate response from local model""" | |
| if not self.model_loaded: | |
| self.load_model() | |
| if not self.model: | |
| return "Error: Model not available" | |
| try: | |
| # Format prompt for Phi-3 | |
| formatted_prompt = f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n" | |
| response = self.model( | |
| formatted_prompt, | |
| max_new_tokens=min(max_tokens, 256), # Limit tokens for speed | |
| temperature=0.1, | |
| stop=["<|end|>", "<|user|>"] | |
| ) | |
| # Clean response | |
| response = response.replace(formatted_prompt, "").strip() | |
| if "<|end|>" in response: | |
| response = response.split("<|end|>")[0].strip() | |
| return response | |
| except Exception as e: | |
| logger.error(f"Generation error: {e}") | |
| return f"Error generating response: {e}" | |
| class GAIAAgent: | |
| """Advanced GAIA agent with reasoning, tools, and multi-step problem solving""" | |
| def __init__(self): | |
| # Initialize tools | |
| self.serper_api_key = os.getenv("SERPER_API_KEY") | |
| if not self.serper_api_key: | |
| logger.warning("SERPER_API_KEY not found. Web search will be disabled.") | |
| self.web_search = None | |
| else: | |
| self.web_search = WebSearchTool(self.serper_api_key) | |
| self.calculator = CalculatorTool() | |
| self.llm = LocalLLMManager() | |
| # Agent configuration | |
| self.max_iterations = 5 | |
| self.max_reasoning_length = 1000 | |
| logger.info("GAIA Agent initialized") | |
| def _identify_question_type(self, question: str) -> str: | |
| """Identify the type of question to determine approach""" | |
| question_lower = question.lower() | |
| if any(word in question_lower for word in ['calculate', 'compute', 'math', '+', '-', '*', '/', '=', 'sum', 'multiply', 'divide']): | |
| return 'mathematical' | |
| elif any(word in question_lower for word in ['current', 'latest', 'recent', 'today', 'now', '2024', '2025']): | |
| return 'current_info' | |
| elif any(word in question_lower for word in ['who', 'what', 'where', 'when', 'why', 'how']): | |
| return 'factual' | |
| elif any(word in question_lower for word in ['analyze', 'compare', 'explain', 'reason']): | |
| return 'analytical' | |
| else: | |
| return 'general' | |
| def _use_web_search(self, query: str) -> str: | |
| """Use web search tool and format results""" | |
| if not self.web_search: | |
| return "Web search not available (API key missing)" | |
| results = self.web_search.search(query, num_results=3) | |
| if not results['success']: | |
| return f"Search failed: {results.get('error', 'Unknown error')}" | |
| if not results['results']: | |
| return "No search results found" | |
| formatted_results = f"Search results for '{query}':\n" | |
| for i, result in enumerate(results['results'], 1): | |
| formatted_results += f"{i}. {result['title']}\n {result['snippet']}\n\n" | |
| return formatted_results | |
| def _use_calculator(self, expression: str) -> str: | |
| """Use calculator tool and format result""" | |
| result = self.calculator.calculate(expression) | |
| if result['success']: | |
| return f"Calculation: {result['expression']} = {result['result']}" | |
| else: | |
| return f"Calculation error: {result['error']}" | |
| def _generate_reasoning(self, question: str, context: str = "") -> str: | |
| """Generate reasoning step using local LLM""" | |
| reasoning_prompt = f"""Question: {question} | |
| Context: {context} | |
| Think step by step about this question. Consider: | |
| 1. What information do I need? | |
| 2. What tools might help? | |
| 3. How should I approach this problem? | |
| Provide a clear reasoning step:""" | |
| try: | |
| reasoning = self.llm.generate(reasoning_prompt, max_tokens=200) | |
| return reasoning | |
| except Exception as e: | |
| logger.error(f"Reasoning generation error: {e}") | |
| return "Unable to generate reasoning step" | |
| def _generate_final_answer(self, question: str, context: str, reasoning_steps: List[str]) -> str: | |
| """Generate final answer using all available information""" | |
| all_reasoning = "\n".join([f"Step {i+1}: {step}" for i, step in enumerate(reasoning_steps)]) | |
| answer_prompt = f"""Question: {question} | |
| Context and Information: | |
| {context} | |
| Reasoning Steps: | |
| {all_reasoning} | |
| Based on all the information and reasoning above, provide a clear, concise, and accurate final answer to the question:""" | |
| try: | |
| answer = self.llm.generate(answer_prompt, max_tokens=200) | |
| return answer.strip() | |
| except Exception as e: | |
| logger.error(f"Answer generation error: {e}") | |
| return "Unable to generate final answer" | |
| def __call__(self, question: str) -> str: | |
| """Main agent execution method""" | |
| logger.info(f"Processing question: {question[:100]}...") | |
| try: | |
| # Initialize | |
| context = "" | |
| reasoning_steps = [] | |
| question_type = self._identify_question_type(question) | |
| logger.info(f"Question type identified: {question_type}") | |
| # Step 1: Initial reasoning | |
| initial_reasoning = self._generate_reasoning(question) | |
| reasoning_steps.append(initial_reasoning) | |
| context += f"Initial reasoning: {initial_reasoning}\n\n" | |
| # Step 2: Apply tools based on question type | |
| if question_type == 'mathematical': | |
| # Try to extract mathematical expressions | |
| math_matches = re.findall(r'[\d\+\-\*/\(\)\.\s\^]+', question) | |
| for match in math_matches: | |
| if len(match.strip()) > 3: # Avoid single digits | |
| calc_result = self._use_calculator(match.strip()) | |
| context += f"Calculation: {calc_result}\n" | |
| elif question_type in ['current_info', 'factual']: | |
| # Use web search for factual or current information | |
| search_result = self._use_web_search(question) | |
| context += f"Web search results: {search_result}\n" | |
| # Step 3: Additional reasoning with context | |
| if context: | |
| additional_reasoning = self._generate_reasoning(question, context) | |
| reasoning_steps.append(additional_reasoning) | |
| context += f"Additional reasoning: {additional_reasoning}\n\n" | |
| # Step 4: Generate final answer | |
| final_answer = self._generate_final_answer(question, context, reasoning_steps) | |
| logger.info(f"Generated answer: {final_answer[:100]}...") | |
| return final_answer | |
| except Exception as e: | |
| logger.error(f"Agent execution error: {e}") | |
| return f"Error processing question: {str(e)}" | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the GAIA Agent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent | |
| try: | |
| print("Initializing GAIA Agent...") | |
| agent = GAIAAgent() | |
| print("GAIA Agent initialized successfully") | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # Agent code link | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(f"Agent code: {agent_code}") | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run GAIA Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running GAIA agent on {len(questions_data)} questions...") | |
| for i, item in enumerate(questions_data): | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
| try: | |
| start_time = time.time() | |
| submitted_answer = agent(question_text) | |
| processing_time = time.time() - start_time | |
| print(f"Question {task_id} processed in {processing_time:.2f}s") | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer, | |
| "Processing Time (s)": f"{processing_time:.2f}" | |
| }) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Submitted Answer": f"AGENT ERROR: {e}", | |
| "Processing Time (s)": "Error" | |
| }) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=120) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks(title="GAIA Agent Evaluation") as demo: | |
| gr.Markdown("# GAIA Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Advanced GAIA Agent Features:** | |
| - ๐ง Local quantized LLM for reasoning (Phi-3-mini optimized for CPU) | |
| - ๐ Web search capabilities via Serper API | |
| - ๐งฎ Mathematical calculation tools | |
| - ๐ฏ Multi-step problem solving approach | |
| - ๐ Optimized for 16GB RAM / 2 vCPU constraints | |
| **Instructions:** | |
| 1. Ensure your SERPER_API_KEY environment variable is set for web search | |
| 2. Log in to your Hugging Face account using the button below | |
| 3. Click 'Run GAIA Evaluation' to start the comprehensive evaluation | |
| **Note:** Initial model loading may take 1-2 minutes. Subsequent questions will be processed faster. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("๐ Run GAIA Evaluation & Submit All Answers", variant="primary") | |
| status_output = gr.Textbox(label="๐ Evaluation Status & Results", lines=8, interactive=False) | |
| results_table = gr.DataFrame(label="๐ Detailed Question Results", wrap=True) | |
| # Add system info | |
| with gr.Accordion("๐ง System Information", open=False): | |
| gr.Markdown(f""" | |
| - **Environment**: Hugging Face Space | |
| - **Resources**: 16GB RAM, 2 vCPU | |
| - **Model**: Phi-3-mini-4k-instruct (quantized) | |
| - **Web Search**: {'โ Enabled' if os.getenv('SERPER_API_KEY') else 'โ Disabled (no API key)'} | |
| - **Calculator**: โ Enabled | |
| - **Timestamp**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S UTC')} | |
| """) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "="*70) | |
| print("๐ GAIA AGENT EVALUATION SYSTEM STARTING") | |
| print("="*70) | |
| # Environment check | |
| space_host = os.getenv("SPACE_HOST") | |
| space_id = os.getenv("SPACE_ID") | |
| serper_key = os.getenv("SERPER_API_KEY") | |
| if space_host: | |
| print(f"โ SPACE_HOST: {space_host}") | |
| print(f" ๐ Runtime URL: https://{space_host}.hf.space") | |
| else: | |
| print("โน๏ธ Running locally (SPACE_HOST not found)") | |
| if space_id: | |
| print(f"โ SPACE_ID: {space_id}") | |
| print(f" ๐ Repo URL: https://huggingface.co/spaces/{space_id}") | |
| else: | |
| print("โน๏ธ SPACE_ID not found") | |
| if serper_key: | |
| print("โ SERPER_API_KEY: Configured") | |
| else: | |
| print("โ ๏ธ SERPER_API_KEY: Not found - Web search will be disabled") | |
| print("="*70) | |
| print("๐ GAIA Agent Features:") | |
| print(" ๐ง Local LLM reasoning") | |
| print(" ๐ Web search integration") | |
| print(" ๐งฎ Mathematical calculations") | |
| print(" ๐ฏ Multi-step problem solving") | |
| print("="*70 + "\n") | |
| print("๐ฏ Launching GAIA Agent Evaluation Interface...") | |
| demo.launch(debug=True, share=False) |