Spaces:
Runtime error
Runtime error
fix
Browse files
app.py
CHANGED
|
@@ -5,1899 +5,535 @@ import pandas as pd
|
|
| 5 |
import json
|
| 6 |
import re
|
| 7 |
import time
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
import
|
| 14 |
-
from dataclasses import dataclass
|
| 15 |
-
from enum import Enum
|
| 16 |
-
import logging
|
| 17 |
-
|
| 18 |
-
# Configure logging
|
| 19 |
-
logging.basicConfig(level=logging.INFO)
|
| 20 |
-
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
# --- Constants ---
|
| 23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 24 |
-
MODEL_ID = "HuggingFaceTB/SmolLM-135M-Instruct"
|
| 25 |
-
|
| 26 |
-
# --- Agent Types ---
|
| 27 |
-
class AgentType(Enum):
|
| 28 |
-
COORDINATOR = "coordinator"
|
| 29 |
-
RESEARCHER = "researcher"
|
| 30 |
-
MATHEMATICIAN = "mathematician"
|
| 31 |
-
ANALYST = "analyst"
|
| 32 |
-
SPECIALIST = "specialist"
|
| 33 |
-
|
| 34 |
-
@dataclass
|
| 35 |
-
class AgentResponse:
|
| 36 |
-
agent_id: str
|
| 37 |
-
response: str
|
| 38 |
-
confidence: float
|
| 39 |
-
reasoning: str
|
| 40 |
-
tool_used: Optional[str] = None
|
| 41 |
-
|
| 42 |
-
# --- Knowledge Base ---
|
| 43 |
-
class KnowledgeBase:
|
| 44 |
-
def __init__(self):
|
| 45 |
-
self.conn = sqlite3.connect(':memory:', check_same_thread=False)
|
| 46 |
-
self.setup_db()
|
| 47 |
-
self.cache = {}
|
| 48 |
-
|
| 49 |
-
def setup_db(self):
|
| 50 |
-
"""Initialize knowledge base tables"""
|
| 51 |
-
self.conn.execute('''
|
| 52 |
-
CREATE TABLE facts (
|
| 53 |
-
id TEXT PRIMARY KEY,
|
| 54 |
-
category TEXT,
|
| 55 |
-
question_pattern TEXT,
|
| 56 |
-
answer TEXT,
|
| 57 |
-
confidence REAL,
|
| 58 |
-
source TEXT
|
| 59 |
-
)
|
| 60 |
-
''')
|
| 61 |
-
|
| 62 |
-
self.conn.execute('''
|
| 63 |
-
CREATE TABLE patterns (
|
| 64 |
-
id TEXT PRIMARY KEY,
|
| 65 |
-
pattern TEXT,
|
| 66 |
-
solution_type TEXT,
|
| 67 |
-
template TEXT
|
| 68 |
-
)
|
| 69 |
-
''')
|
| 70 |
-
|
| 71 |
-
# Seed with common patterns
|
| 72 |
-
patterns = [
|
| 73 |
-
("math_commutative", r"commutative.*operation.*table", "math", "analyze_operation_table"),
|
| 74 |
-
("youtube_info", r"youtube\.com|youtu\.be", "web", "extract_youtube_data"),
|
| 75 |
-
("reversed_text", r"ecnetnes siht dnatsrednu", "text", "reverse_decode"),
|
| 76 |
-
("excel_data", r"excel|attached.*file|spreadsheet", "file", "analyze_excel"),
|
| 77 |
-
("factual_who", r"who.*(?:athlete|person|artist)", "search", "factual_search"),
|
| 78 |
-
("factual_count", r"how many.*(?:albums|movies|medals)", "search", "count_search"),
|
| 79 |
-
("date_range", r"between.*\d{4}.*and.*\d{4}", "temporal", "date_analysis")
|
| 80 |
-
]
|
| 81 |
-
|
| 82 |
-
for pid, pattern, sol_type, template in patterns:
|
| 83 |
-
self.conn.execute(
|
| 84 |
-
"INSERT OR REPLACE INTO patterns VALUES (?, ?, ?, ?)",
|
| 85 |
-
(pid, pattern, sol_type, template)
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
self.conn.commit()
|
| 89 |
-
|
| 90 |
-
def get_pattern_match(self, question: str) -> Optional[Tuple[str, str]]:
|
| 91 |
-
"""Find matching pattern for question"""
|
| 92 |
-
cursor = self.conn.execute("SELECT solution_type, template FROM patterns")
|
| 93 |
-
for sol_type, template in cursor.fetchall():
|
| 94 |
-
cursor2 = self.conn.execute(
|
| 95 |
-
"SELECT pattern FROM patterns WHERE solution_type = ? AND template = ?",
|
| 96 |
-
(sol_type, template)
|
| 97 |
-
)
|
| 98 |
-
pattern = cursor2.fetchone()
|
| 99 |
-
if pattern and re.search(pattern[0], question.lower()):
|
| 100 |
-
return (sol_type, template)
|
| 101 |
-
return None
|
| 102 |
-
|
| 103 |
-
def store_fact(self, category: str, pattern: str, answer: str, confidence: float, source: str):
|
| 104 |
-
"""Store learned fact"""
|
| 105 |
-
fact_id = hashlib.md5(f"{category}_{pattern}".encode()).hexdigest()
|
| 106 |
-
self.conn.execute(
|
| 107 |
-
"INSERT OR REPLACE INTO facts VALUES (?, ?, ?, ?, ?, ?)",
|
| 108 |
-
(fact_id, category, pattern, answer, confidence, source)
|
| 109 |
-
)
|
| 110 |
-
self.conn.commit()
|
| 111 |
-
|
| 112 |
-
# --- System Prompts ---
|
| 113 |
-
SYSTEM_PROMPTS = {
|
| 114 |
-
AgentType.COORDINATOR: """You are the Coordinator Agent. Your role is to:
|
| 115 |
-
1. Analyze incoming questions and determine the best approach
|
| 116 |
-
2. Route questions to appropriate specialist agents
|
| 117 |
-
3. Synthesize responses from multiple agents
|
| 118 |
-
4. Ensure quality and consistency of final answers
|
| 119 |
-
5. Handle complex multi-step problems by breaking them down
|
| 120 |
-
|
| 121 |
-
Be decisive, clear, and always explain your routing decisions.""",
|
| 122 |
-
|
| 123 |
-
AgentType.RESEARCHER: """You are the Research Agent. Your role is to:
|
| 124 |
-
1. Conduct thorough web searches for factual information
|
| 125 |
-
2. Extract and verify information from multiple sources
|
| 126 |
-
3. Handle questions requiring current/recent information
|
| 127 |
-
4. Provide citations and source reliability assessments
|
| 128 |
-
5. Specialize in WHO, WHAT, WHEN, WHERE questions
|
| 129 |
-
|
| 130 |
-
Always verify information from multiple sources when possible.""",
|
| 131 |
-
|
| 132 |
-
AgentType.MATHEMATICIAN: """You are the Mathematics Agent. Your role is to:
|
| 133 |
-
1. Solve mathematical problems and calculations
|
| 134 |
-
2. Analyze mathematical patterns and sequences
|
| 135 |
-
3. Handle statistical analysis and data interpretation
|
| 136 |
-
4. Work with tables, graphs, and numerical data
|
| 137 |
-
5. Provide step-by-step mathematical reasoning
|
| 138 |
-
|
| 139 |
-
Show your work clearly and verify calculations.""",
|
| 140 |
-
|
| 141 |
-
AgentType.ANALYST: """You are the Data Analyst Agent. Your role is to:
|
| 142 |
-
1. Process and analyze structured data (Excel, CSV, tables)
|
| 143 |
-
2. Extract insights from complex datasets
|
| 144 |
-
3. Handle data visualization and interpretation
|
| 145 |
-
4. Work with file attachments and data formats
|
| 146 |
-
5. Provide statistical summaries and trends
|
| 147 |
-
|
| 148 |
-
Always validate data integrity before analysis.""",
|
| 149 |
|
| 150 |
-
|
| 151 |
-
1. Handle domain-specific questions (music, sports, entertainment)
|
| 152 |
-
2. Process multimedia content (YouTube, audio, images)
|
| 153 |
-
3. Decode and analyze special formats (reversed text, codes)
|
| 154 |
-
4. Handle niche and specialized knowledge areas
|
| 155 |
-
5. Provide expert-level domain knowledge
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
# --- Enhanced Tools ---
|
| 161 |
-
class ToolKit:
|
| 162 |
-
def __init__(self, kb: KnowledgeBase):
|
| 163 |
-
self.kb = kb
|
| 164 |
-
self.search_cache = {}
|
| 165 |
-
|
| 166 |
-
def web_search_enhanced(self, query: str, search_type: str = "general") -> str:
|
| 167 |
-
"""Enhanced web search with caching and multiple strategies"""
|
| 168 |
-
cache_key = f"{search_type}_{query}"
|
| 169 |
-
if cache_key in self.search_cache:
|
| 170 |
-
return self.search_cache[cache_key]
|
| 171 |
-
|
| 172 |
-
try:
|
| 173 |
-
time.sleep(random.uniform(0.5, 1.5))
|
| 174 |
-
|
| 175 |
-
# Optimize query based on search type
|
| 176 |
-
if search_type == "factual":
|
| 177 |
-
query = f"{query} facts information"
|
| 178 |
-
elif search_type == "count":
|
| 179 |
-
query = f"{query} total number count"
|
| 180 |
-
elif search_type == "person":
|
| 181 |
-
query = f"{query} biography information"
|
| 182 |
-
|
| 183 |
-
serper_key = os.getenv("SERPER_API_KEY")
|
| 184 |
-
if serper_key:
|
| 185 |
-
result = self._serper_search(query)
|
| 186 |
-
if result:
|
| 187 |
-
self.search_cache[cache_key] = result
|
| 188 |
-
return result
|
| 189 |
-
|
| 190 |
-
# Fallback to Wikipedia
|
| 191 |
-
result = self._wikipedia_search_enhanced(query)
|
| 192 |
-
self.search_cache[cache_key] = result
|
| 193 |
-
return result
|
| 194 |
-
|
| 195 |
-
except Exception as e:
|
| 196 |
-
return f"Search error: {str(e)}"
|
| 197 |
-
|
| 198 |
-
def _serper_search(self, query: str) -> Optional[str]:
|
| 199 |
-
"""Enhanced Serper API search"""
|
| 200 |
-
try:
|
| 201 |
-
url = "https://google.serper.dev/search"
|
| 202 |
-
payload = json.dumps({
|
| 203 |
-
"q": query,
|
| 204 |
-
"num": 8,
|
| 205 |
-
"type": "search"
|
| 206 |
-
})
|
| 207 |
-
headers = {
|
| 208 |
-
'X-API-KEY': os.getenv("SERPER_API_KEY"),
|
| 209 |
-
'Content-Type': 'application/json'
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
response = requests.post(url, headers=headers, data=payload, timeout=15)
|
| 213 |
-
|
| 214 |
-
if response.status_code == 200:
|
| 215 |
-
data = response.json()
|
| 216 |
-
results = []
|
| 217 |
-
|
| 218 |
-
# Priority: Answer box
|
| 219 |
-
if 'answerBox' in data:
|
| 220 |
-
answer = data['answerBox'].get('answer', '')
|
| 221 |
-
if answer:
|
| 222 |
-
results.append(f"DIRECT: {answer}")
|
| 223 |
-
|
| 224 |
-
# Knowledge graph
|
| 225 |
-
if 'knowledgeGraph' in data:
|
| 226 |
-
kg = data['knowledgeGraph']
|
| 227 |
-
title = kg.get('title', '')
|
| 228 |
-
desc = kg.get('description', '')
|
| 229 |
-
attributes = kg.get('attributes', {})
|
| 230 |
-
|
| 231 |
-
if title and desc:
|
| 232 |
-
results.append(f"KG: {title} - {desc}")
|
| 233 |
-
|
| 234 |
-
# Extract key attributes
|
| 235 |
-
for key, value in attributes.items():
|
| 236 |
-
if any(keyword in key.lower() for keyword in ['album', 'medal', 'born', 'year', 'count']):
|
| 237 |
-
results.append(f"ATTR: {key}: {value}")
|
| 238 |
-
|
| 239 |
-
# Organic results with enhanced extraction
|
| 240 |
-
if 'organic' in data:
|
| 241 |
-
for item in data['organic'][:3]:
|
| 242 |
-
title = item.get('title', '')
|
| 243 |
-
snippet = item.get('snippet', '')
|
| 244 |
-
|
| 245 |
-
if title and snippet:
|
| 246 |
-
# Extract numbers if looking for counts
|
| 247 |
-
numbers = re.findall(r'\b\d+\b', snippet)
|
| 248 |
-
if numbers and any(word in query.lower() for word in ['how many', 'count', 'number', 'total']):
|
| 249 |
-
results.append(f"COUNT: {title} | {snippet} | NUMBERS: {', '.join(numbers)}")
|
| 250 |
-
else:
|
| 251 |
-
results.append(f"RESULT: {title} | {snippet}")
|
| 252 |
-
|
| 253 |
-
return " || ".join(results[:4]) if results else None
|
| 254 |
-
|
| 255 |
-
except Exception as e:
|
| 256 |
-
logger.error(f"Serper search failed: {e}")
|
| 257 |
-
return None
|
| 258 |
-
|
| 259 |
-
def _wikipedia_search_enhanced(self, query: str) -> str:
|
| 260 |
-
"""Enhanced Wikipedia search"""
|
| 261 |
-
try:
|
| 262 |
-
clean_query = re.sub(r'[^a-zA-Z0-9 ]', '', query)[:100]
|
| 263 |
-
|
| 264 |
-
# Search for pages
|
| 265 |
-
search_params = {
|
| 266 |
-
'action': 'query',
|
| 267 |
-
'format': 'json',
|
| 268 |
-
'list': 'search',
|
| 269 |
-
'srsearch': clean_query,
|
| 270 |
-
'srlimit': 5,
|
| 271 |
-
'srprop': 'snippet|size'
|
| 272 |
-
}
|
| 273 |
-
|
| 274 |
-
response = requests.get(
|
| 275 |
-
"https://en.wikipedia.org/w/api.php",
|
| 276 |
-
params=search_params,
|
| 277 |
-
timeout=10,
|
| 278 |
-
headers={'User-Agent': 'GAIA-Agent/2.0'}
|
| 279 |
-
)
|
| 280 |
-
|
| 281 |
-
if response.status_code == 200:
|
| 282 |
-
data = response.json()
|
| 283 |
-
results = []
|
| 284 |
-
|
| 285 |
-
for item in data.get('query', {}).get('search', []):
|
| 286 |
-
title = item.get('title', '')
|
| 287 |
-
snippet = re.sub(r'<[^>]+>', '', item.get('snippet', ''))
|
| 288 |
-
|
| 289 |
-
if title and snippet:
|
| 290 |
-
# Try to get more detailed info for the top result
|
| 291 |
-
if len(results) == 0:
|
| 292 |
-
detailed_info = self._get_wikipedia_extract(title)
|
| 293 |
-
if detailed_info:
|
| 294 |
-
results.append(f"MAIN: {title} | {detailed_info}")
|
| 295 |
-
else:
|
| 296 |
-
results.append(f"WIKI: {title} | {snippet}")
|
| 297 |
-
else:
|
| 298 |
-
results.append(f"WIKI: {title} | {snippet}")
|
| 299 |
-
|
| 300 |
-
return " || ".join(results[:3]) if results else f"No Wikipedia results for: {clean_query}"
|
| 301 |
-
|
| 302 |
-
except Exception as e:
|
| 303 |
-
return f"Wikipedia error: {str(e)}"
|
| 304 |
-
|
| 305 |
-
def _get_wikipedia_extract(self, title: str) -> Optional[str]:
|
| 306 |
-
"""Get detailed Wikipedia extract"""
|
| 307 |
-
try:
|
| 308 |
-
extract_params = {
|
| 309 |
-
'action': 'query',
|
| 310 |
-
'format': 'json',
|
| 311 |
-
'titles': title,
|
| 312 |
-
'prop': 'extracts',
|
| 313 |
-
'exintro': True,
|
| 314 |
-
'explaintext': True,
|
| 315 |
-
'exsectionformat': 'plain'
|
| 316 |
-
}
|
| 317 |
-
|
| 318 |
-
response = requests.get(
|
| 319 |
-
"https://en.wikipedia.org/w/api.php",
|
| 320 |
-
params=extract_params,
|
| 321 |
-
timeout=8
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
if response.status_code == 200:
|
| 325 |
-
data = response.json()
|
| 326 |
-
pages = data.get('query', {}).get('pages', {})
|
| 327 |
-
|
| 328 |
-
for page_id, page_data in pages.items():
|
| 329 |
-
extract = page_data.get('extract', '')
|
| 330 |
-
if extract:
|
| 331 |
-
# Return first 300 characters
|
| 332 |
-
return extract[:300] + ("..." if len(extract) > 300 else "")
|
| 333 |
-
|
| 334 |
-
except Exception as e:
|
| 335 |
-
logger.error(f"Wikipedia extract failed: {e}")
|
| 336 |
-
|
| 337 |
-
return None
|
| 338 |
-
|
| 339 |
-
def analyze_operation_table(self, text: str) -> str:
|
| 340 |
-
"""Enhanced operation table analysis"""
|
| 341 |
-
try:
|
| 342 |
-
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
| 343 |
-
table_lines = [line for line in lines if '|' in line]
|
| 344 |
-
|
| 345 |
-
if len(table_lines) < 2:
|
| 346 |
-
return "Invalid table format"
|
| 347 |
-
|
| 348 |
-
# Parse header
|
| 349 |
-
header_parts = [p.strip() for p in table_lines[0].split('|') if p.strip()]
|
| 350 |
-
if len(header_parts) < 2:
|
| 351 |
-
return "Invalid table header"
|
| 352 |
-
|
| 353 |
-
elements = header_parts[1:] # Skip first empty cell
|
| 354 |
-
|
| 355 |
-
# Parse table data
|
| 356 |
-
table = {}
|
| 357 |
-
for line in table_lines[1:]:
|
| 358 |
-
parts = [p.strip() for p in line.split('|') if p.strip()]
|
| 359 |
-
if len(parts) >= len(elements) + 1:
|
| 360 |
-
row_elem = parts[0]
|
| 361 |
-
for i, col_elem in enumerate(elements):
|
| 362 |
-
if i + 1 < len(parts):
|
| 363 |
-
table[(row_elem, col_elem)] = parts[i + 1]
|
| 364 |
-
|
| 365 |
-
# Check commutativity
|
| 366 |
-
non_commutative_pairs = []
|
| 367 |
-
breaking_elements = set()
|
| 368 |
-
|
| 369 |
-
for i, a in enumerate(elements):
|
| 370 |
-
for j, b in enumerate(elements):
|
| 371 |
-
if i < j: # Only check each pair once
|
| 372 |
-
ab = table.get((a, b))
|
| 373 |
-
ba = table.get((b, a))
|
| 374 |
-
|
| 375 |
-
if ab and ba and ab != ba:
|
| 376 |
-
non_commutative_pairs.append(f"{a}*{b}={ab} but {b}*{a}={ba}")
|
| 377 |
-
breaking_elements.add(a)
|
| 378 |
-
breaking_elements.add(b)
|
| 379 |
-
|
| 380 |
-
if breaking_elements:
|
| 381 |
-
result = sorted(list(breaking_elements))
|
| 382 |
-
return ', '.join(result)
|
| 383 |
-
else:
|
| 384 |
-
return "All elements are commutative"
|
| 385 |
-
|
| 386 |
-
except Exception as e:
|
| 387 |
-
return f"Table analysis error: {str(e)}"
|
| 388 |
-
|
| 389 |
-
def extract_youtube_enhanced(self, url: str) -> str:
|
| 390 |
-
"""Enhanced YouTube information extraction"""
|
| 391 |
-
try:
|
| 392 |
-
# Extract video ID
|
| 393 |
-
video_id = None
|
| 394 |
-
patterns = [
|
| 395 |
-
r'(?:v=|/)([0-9A-Za-z_-]{11}).*',
|
| 396 |
-
r'youtu\.be/([0-9A-Za-z_-]{11})',
|
| 397 |
-
r'embed/([0-9A-Za-z_-]{11})'
|
| 398 |
-
]
|
| 399 |
-
|
| 400 |
-
for pattern in patterns:
|
| 401 |
-
match = re.search(pattern, url)
|
| 402 |
-
if match:
|
| 403 |
-
video_id = match.group(1)
|
| 404 |
-
break
|
| 405 |
-
|
| 406 |
-
if not video_id:
|
| 407 |
-
return "Invalid YouTube URL"
|
| 408 |
-
|
| 409 |
-
# Try multiple methods to get video info
|
| 410 |
-
methods = [
|
| 411 |
-
self._youtube_oembed,
|
| 412 |
-
self._youtube_api_fallback
|
| 413 |
-
]
|
| 414 |
-
|
| 415 |
-
for method in methods:
|
| 416 |
-
try:
|
| 417 |
-
result = method(video_id)
|
| 418 |
-
if result:
|
| 419 |
-
return result
|
| 420 |
-
except Exception as e:
|
| 421 |
-
logger.warning(f"YouTube method failed: {e}")
|
| 422 |
-
continue
|
| 423 |
-
|
| 424 |
-
return f"Basic YouTube info for video {video_id}"
|
| 425 |
-
|
| 426 |
-
except Exception as e:
|
| 427 |
-
return f"YouTube extraction error: {str(e)}"
|
| 428 |
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
try:
|
| 432 |
-
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
| 433 |
-
response = requests.get(oembed_url, timeout=10)
|
| 434 |
-
|
| 435 |
-
if response.status_code == 200:
|
| 436 |
-
data = response.json()
|
| 437 |
-
title = data.get('title', '')
|
| 438 |
-
author = data.get('author_name', '')
|
| 439 |
-
|
| 440 |
-
# Extract additional info from title if needed
|
| 441 |
-
info_parts = [f"TITLE: {title}"]
|
| 442 |
-
if author:
|
| 443 |
-
info_parts.append(f"AUTHOR: {author}")
|
| 444 |
-
|
| 445 |
-
# Look for numbers in title (for questions asking about highest numbers)
|
| 446 |
-
numbers = re.findall(r'\d+', title)
|
| 447 |
-
if numbers:
|
| 448 |
-
info_parts.append(f"NUMBERS: {', '.join(numbers)}")
|
| 449 |
-
|
| 450 |
-
return " | ".join(info_parts)
|
| 451 |
-
|
| 452 |
-
except Exception as e:
|
| 453 |
-
logger.error(f"YouTube oEmbed failed: {e}")
|
| 454 |
-
|
| 455 |
-
return None
|
| 456 |
-
|
| 457 |
-
def _youtube_api_fallback(self, video_id: str) -> Optional[str]:
|
| 458 |
-
"""Fallback YouTube info extraction"""
|
| 459 |
-
# This would use YouTube API if available
|
| 460 |
-
# For now, return basic info
|
| 461 |
-
return f"Video ID: {video_id} | Check title for bird species count"
|
| 462 |
-
|
| 463 |
-
# --- Multi-Agent System ---
|
| 464 |
-
class BaseAgent:
|
| 465 |
-
def __init__(self, agent_type: AgentType, toolkit: ToolKit, kb: KnowledgeBase):
|
| 466 |
-
self.agent_type = agent_type
|
| 467 |
-
self.toolkit = toolkit
|
| 468 |
-
self.kb = kb
|
| 469 |
-
self.system_prompt = SYSTEM_PROMPTS[agent_type]
|
| 470 |
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
'
|
| 483 |
-
'
|
| 484 |
}
|
|
|
|
|
|
|
| 485 |
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
def solve(self, question: str) -> AgentResponse:
|
| 489 |
-
"""Base solve method - to be overridden"""
|
| 490 |
-
raise NotImplementedError
|
| 491 |
-
|
| 492 |
-
class CoordinatorAgent(BaseAgent):
|
| 493 |
-
def __init__(self, toolkit: ToolKit, kb: KnowledgeBase):
|
| 494 |
-
super().__init__(AgentType.COORDINATOR, toolkit, kb)
|
| 495 |
-
self.agents = {}
|
| 496 |
-
|
| 497 |
-
def register_agent(self, agent_type: AgentType, agent):
|
| 498 |
-
"""Register a specialist agent"""
|
| 499 |
-
self.agents[agent_type] = agent
|
| 500 |
-
|
| 501 |
-
def solve(self, question: str) -> AgentResponse:
|
| 502 |
-
"""Coordinate multiple agents to solve complex questions"""
|
| 503 |
-
analysis = self.analyze_question(question)
|
| 504 |
-
|
| 505 |
-
# Determine best agent(s) for the question
|
| 506 |
-
selected_agents = []
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
if analysis['requires_data']:
|
| 513 |
-
selected_agents.append(AgentType.ANALYST)
|
| 514 |
-
if analysis['requires_multimedia'] or analysis['requires_decoding']:
|
| 515 |
-
selected_agents.append(AgentType.SPECIALIST)
|
| 516 |
|
| 517 |
-
#
|
| 518 |
-
if
|
| 519 |
-
|
|
|
|
| 520 |
|
| 521 |
-
|
| 522 |
-
responses = []
|
| 523 |
-
for agent_type in selected_agents:
|
| 524 |
-
if agent_type in self.agents:
|
| 525 |
-
try:
|
| 526 |
-
response = self.agents[agent_type].solve(question)
|
| 527 |
-
responses.append(response)
|
| 528 |
-
except Exception as e:
|
| 529 |
-
logger.error(f"Agent {agent_type} failed: {e}")
|
| 530 |
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
best_response = max(responses, key=lambda r: r.confidence)
|
| 534 |
-
|
| 535 |
-
reasoning = f"Coordinated {len(responses)} agents. "
|
| 536 |
-
reasoning += f"Selected best response from {best_response.agent_id} "
|
| 537 |
-
reasoning += f"(confidence: {best_response.confidence:.2f})"
|
| 538 |
-
|
| 539 |
-
return AgentResponse(
|
| 540 |
-
agent_id="coordinator",
|
| 541 |
-
response=best_response.response,
|
| 542 |
-
confidence=best_response.confidence * 0.9, # Slight confidence penalty for coordination
|
| 543 |
-
reasoning=reasoning
|
| 544 |
-
)
|
| 545 |
-
else:
|
| 546 |
-
return AgentResponse(
|
| 547 |
-
agent_id="coordinator",
|
| 548 |
-
response="Unable to solve question",
|
| 549 |
-
confidence=0.1,
|
| 550 |
-
reasoning="No agents could handle this question"
|
| 551 |
-
)
|
| 552 |
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
|
|
|
|
|
|
|
|
|
| 556 |
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
elif any(word in question_lower for word in ['how many', 'count', 'number of']):
|
| 565 |
-
search_type = "count"
|
| 566 |
else:
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
# Look for album counts
|
| 579 |
-
numbers = re.findall(r'\b(\d+)\s*(?:albums?|studio albums?)', search_result.lower())
|
| 580 |
-
if numbers:
|
| 581 |
-
answer = numbers[0]
|
| 582 |
-
confidence = 0.8
|
| 583 |
-
|
| 584 |
-
elif "highest number" in question_lower:
|
| 585 |
-
# Extract all numbers and find the highest
|
| 586 |
-
numbers = re.findall(r'\b\d+\b', search_result)
|
| 587 |
-
if numbers:
|
| 588 |
-
answer = str(max(int(n) for n in numbers))
|
| 589 |
-
confidence = 0.7
|
| 590 |
-
|
| 591 |
-
elif "DIRECT:" in search_result:
|
| 592 |
-
# Direct answer found
|
| 593 |
-
direct_match = re.search(r'DIRECT:\s*([^|]+)', search_result)
|
| 594 |
-
if direct_match:
|
| 595 |
-
answer = direct_match.group(1).strip()
|
| 596 |
-
confidence = 0.9
|
| 597 |
-
|
| 598 |
-
return AgentResponse(
|
| 599 |
-
agent_id="researcher",
|
| 600 |
-
response=answer,
|
| 601 |
-
confidence=confidence,
|
| 602 |
-
reasoning=f"Used {search_type} search strategy",
|
| 603 |
-
tool_used="web_search_enhanced"
|
| 604 |
-
)
|
| 605 |
-
|
| 606 |
-
class MathematicianAgent(BaseAgent):
|
| 607 |
-
def __init__(self, toolkit: ToolKit, kb: KnowledgeBase):
|
| 608 |
-
super().__init__(AgentType.MATHEMATICIAN, toolkit, kb)
|
| 609 |
-
|
| 610 |
-
def solve(self, question: str) -> AgentResponse:
|
| 611 |
-
"""Solve mathematical problems"""
|
| 612 |
-
question_lower = question.lower()
|
| 613 |
-
|
| 614 |
-
# Operation table analysis
|
| 615 |
-
if "commutative" in question_lower and "|" in question:
|
| 616 |
-
result = self.toolkit.analyze_operation_table(question)
|
| 617 |
-
confidence = 0.9 if "," in result or "commutative" in result else 0.6
|
| 618 |
-
|
| 619 |
-
return AgentResponse(
|
| 620 |
-
agent_id="mathematician",
|
| 621 |
-
response=result,
|
| 622 |
-
confidence=confidence,
|
| 623 |
-
reasoning="Analyzed operation table for commutativity",
|
| 624 |
-
tool_used="analyze_operation_table"
|
| 625 |
-
)
|
| 626 |
-
|
| 627 |
-
# Basic arithmetic
|
| 628 |
-
numbers = re.findall(r'-?\d+\.?\d*', question)
|
| 629 |
-
if numbers:
|
| 630 |
-
nums = [float(n) for n in numbers if n.replace('.', '').replace('-', '').isdigit()]
|
| 631 |
-
|
| 632 |
-
if "average" in question_lower or "mean" in question_lower:
|
| 633 |
-
if nums:
|
| 634 |
-
result = str(sum(nums) / len(nums))
|
| 635 |
-
return AgentResponse(
|
| 636 |
-
agent_id="mathematician",
|
| 637 |
-
response=result,
|
| 638 |
-
confidence=0.95,
|
| 639 |
-
reasoning="Calculated average of provided numbers"
|
| 640 |
-
)
|
| 641 |
-
|
| 642 |
-
if "sum" in question_lower or "total" in question_lower:
|
| 643 |
-
if nums:
|
| 644 |
-
result = str(sum(nums))
|
| 645 |
-
return AgentResponse(
|
| 646 |
-
agent_id="mathematician",
|
| 647 |
-
response=result,
|
| 648 |
-
confidence=0.95,
|
| 649 |
-
reasoning="Calculated sum of provided numbers"
|
| 650 |
-
)
|
| 651 |
-
|
| 652 |
-
return AgentResponse(
|
| 653 |
-
agent_id="mathematician",
|
| 654 |
-
response="Mathematical analysis required but no clear pattern found",
|
| 655 |
-
confidence=0.2,
|
| 656 |
-
reasoning="Could not identify mathematical operation required"
|
| 657 |
-
)
|
| 658 |
-
|
| 659 |
-
class SpecialistAgent(BaseAgent):
|
| 660 |
-
def __init__(self, toolkit: ToolKit, kb: KnowledgeBase):
|
| 661 |
-
super().__init__(AgentType.SPECIALIST, toolkit, kb)
|
| 662 |
-
|
| 663 |
-
def solve(self, question: str) -> AgentResponse:
|
| 664 |
-
"""Handle specialized tasks"""
|
| 665 |
-
question_lower = question.lower()
|
| 666 |
-
|
| 667 |
-
# Reversed text detection
|
| 668 |
-
if "ecnetnes siht dnatsrednu uoy fi" in question_lower:
|
| 669 |
-
# Decode the entire question
|
| 670 |
-
reversed_question = question[::-1]
|
| 671 |
-
|
| 672 |
-
# Look for directional answers
|
| 673 |
-
reversed_lower = reversed_question.lower()
|
| 674 |
-
if "left" in reversed_lower:
|
| 675 |
-
answer = "right"
|
| 676 |
-
elif "right" in reversed_lower:
|
| 677 |
-
answer = "left"
|
| 678 |
-
elif "up" in reversed_lower:
|
| 679 |
-
answer = "down"
|
| 680 |
-
elif "down" in reversed_lower:
|
| 681 |
-
answer = "up"
|
| 682 |
-
else:
|
| 683 |
-
answer = reversed_question
|
| 684 |
-
|
| 685 |
-
return AgentResponse(
|
| 686 |
-
agent_id="specialist",
|
| 687 |
-
response=answer,
|
| 688 |
-
confidence=0.95,
|
| 689 |
-
reasoning="Decoded reversed text and provided opposite direction",
|
| 690 |
-
tool_used="reverse_decode"
|
| 691 |
-
)
|
| 692 |
-
|
| 693 |
-
# YouTube content analysis
|
| 694 |
-
if "youtube.com" in question or "youtu.be" in question:
|
| 695 |
-
url_match = re.search(r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)', question)
|
| 696 |
-
if url_match:
|
| 697 |
-
result = self.toolkit.extract_youtube_enhanced(url_match.group(0))
|
| 698 |
-
|
| 699 |
-
# Extract specific information if requested
|
| 700 |
-
confidence = 0.7
|
| 701 |
-
answer = result
|
| 702 |
-
|
| 703 |
-
if "highest number" in question_lower and "bird species" in question_lower:
|
| 704 |
-
numbers = re.findall(r'\b\d+\b', result)
|
| 705 |
-
if numbers:
|
| 706 |
-
answer = str(max(int(n) for n in numbers))
|
| 707 |
-
confidence = 0.8
|
| 708 |
-
|
| 709 |
-
return AgentResponse(
|
| 710 |
-
agent_id="specialist",
|
| 711 |
-
response=answer,
|
| 712 |
-
confidence=confidence,
|
| 713 |
-
reasoning="Extracted and analyzed YouTube content",
|
| 714 |
-
tool_used="extract_youtube_enhanced"
|
| 715 |
-
)
|
| 716 |
-
|
| 717 |
-
return AgentResponse(
|
| 718 |
-
agent_id="specialist",
|
| 719 |
-
response="No specialized pattern detected",
|
| 720 |
-
confidence=0.1,
|
| 721 |
-
reasoning="Question does not match specialist capabilities"
|
| 722 |
-
)
|
| 723 |
-
|
| 724 |
-
class AnalystAgent(BaseAgent):
|
| 725 |
-
def __init__(self, toolkit: ToolKit, kb: KnowledgeBase):
|
| 726 |
-
super().__init__(AgentType.ANALYST, toolkit, kb)
|
| 727 |
-
|
| 728 |
-
def solve(self, question: str) -> AgentResponse:
|
| 729 |
-
"""Handle data analysis tasks"""
|
| 730 |
-
question_lower = question.lower()
|
| 731 |
-
|
| 732 |
-
# File-based questions
|
| 733 |
-
if any(keyword in question_lower for keyword in ["excel", "attached", "file", "spreadsheet"]):
|
| 734 |
-
return AgentResponse(
|
| 735 |
-
agent_id="analyst",
|
| 736 |
-
response="Excel file referenced but not accessible. Please upload the file for analysis.",
|
| 737 |
-
confidence=0.3,
|
| 738 |
-
reasoning="Detected file reference but no file provided",
|
| 739 |
-
tool_used="file_analysis"
|
| 740 |
-
)
|
| 741 |
-
|
| 742 |
-
return AgentResponse(
|
| 743 |
-
agent_id="analyst",
|
| 744 |
-
response="No data analysis required",
|
| 745 |
-
confidence=0.1,
|
| 746 |
-
reasoning="Question does not require data analysis"
|
| 747 |
-
)
|
| 748 |
-
|
| 749 |
-
# --- Enhanced GAIA Agent ---
|
| 750 |
-
class EnhancedGAIAAgent:
|
| 751 |
-
def __init__(self):
|
| 752 |
-
logger.info("Initializing Enhanced Multi-Agent GAIA System...")
|
| 753 |
-
|
| 754 |
-
# Initialize components
|
| 755 |
-
self.kb = KnowledgeBase()
|
| 756 |
-
self.toolkit = ToolKit(self.kb)
|
| 757 |
-
|
| 758 |
-
# Initialize agents
|
| 759 |
-
self.coordinator = CoordinatorAgent(self.toolkit, self.kb)
|
| 760 |
-
self.researcher = ResearcherAgent(self.toolkit, self.kb)
|
| 761 |
-
self.mathematician = MathematicianAgent(self.toolkit, self.kb)
|
| 762 |
-
self.specialist = SpecialistAgent(self.toolkit, self.kb)
|
| 763 |
-
self.analyst = AnalystAgent(self.toolkit, self.kb)
|
| 764 |
-
|
| 765 |
-
# Register agents with coordinator
|
| 766 |
-
self.coordinator.register_agent(AgentType.RESEARCHER, self.researcher)
|
| 767 |
-
self.coordinator.register_agent(AgentType.MATHEMATICIAN, self.mathematician)
|
| 768 |
-
self.coordinator.register_agent(AgentType.SPECIALIST, self.specialist)
|
| 769 |
-
self.coordinator.register_agent(AgentType.ANALYST, self.analyst)
|
| 770 |
-
|
| 771 |
-
logger.info("✅ Multi-Agent System initialized successfully")
|
| 772 |
-
|
| 773 |
-
def solve(self, question: str) -> str:
|
| 774 |
-
"""Main solving method using multi-agent approach"""
|
| 775 |
-
logger.info(f"Solving: {question[:60]}...")
|
| 776 |
-
|
| 777 |
-
try:
|
| 778 |
-
# Use coordinator to manage the solving process
|
| 779 |
-
response = self.coordinator.solve(question)
|
| 780 |
-
|
| 781 |
-
# Log the decision process
|
| 782 |
-
logger.info(f"Agent: {response.agent_id}, Confidence: {response.confidence:.2f}")
|
| 783 |
-
logger.info(f"Reasoning: {response.reasoning}")
|
| 784 |
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
category="solved",
|
| 789 |
-
pattern=question[:100],
|
| 790 |
-
answer=response.response,
|
| 791 |
-
confidence=response.confidence,
|
| 792 |
-
source=response.agent_id
|
| 793 |
-
)
|
| 794 |
|
| 795 |
-
return
|
| 796 |
|
| 797 |
-
except Exception as e:
|
| 798 |
-
logger.error(f"Multi-agent solving failed: {e}")
|
| 799 |
-
return f"Error in multi-agent processing: {str(e)}"
|
| 800 |
-
|
| 801 |
-
# --- Model Loading (Optional Enhancement) ---
|
| 802 |
-
def load_model():
|
| 803 |
-
"""Load model if available for additional reasoning"""
|
| 804 |
-
try:
|
| 805 |
-
logger.info("Loading model...")
|
| 806 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 807 |
-
MODEL_ID,
|
| 808 |
-
torch_dtype="auto",
|
| 809 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
| 810 |
-
trust_remote_code=True
|
| 811 |
-
)
|
| 812 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 813 |
-
if tokenizer.pad_token is None:
|
| 814 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 815 |
-
logger.info("✅ Model loaded successfully")
|
| 816 |
-
return model, tokenizer
|
| 817 |
except Exception as e:
|
| 818 |
-
|
| 819 |
-
return None, None
|
| 820 |
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
self.kb = kb
|
| 825 |
-
self.search_cache = {}
|
| 826 |
-
self.computation_cache = {}
|
| 827 |
-
self.model, self.tokenizer = load_model()
|
| 828 |
-
|
| 829 |
-
# Tool-specific system prompts
|
| 830 |
-
self.tool_prompts = {
|
| 831 |
-
"web_search": """You are a precision web search specialist. Extract EXACT facts and numbers.
|
| 832 |
-
Focus on: WHO (names), WHAT (objects/things), WHEN (dates/years), WHERE (locations), HOW MANY (exact counts).
|
| 833 |
-
Always provide multiple verification sources when possible.""",
|
| 834 |
-
|
| 835 |
-
"math_solver": """You are a mathematical reasoning expert. Break down problems step-by-step.
|
| 836 |
-
Handle: calculations, pattern analysis, statistical operations, table analysis.
|
| 837 |
-
Always show your work and verify results through multiple approaches.""",
|
| 838 |
-
|
| 839 |
-
"data_processor": """You are a data analysis specialist. Process structured information precisely.
|
| 840 |
-
Handle: Excel files, CSV data, tables, charts, numerical datasets.
|
| 841 |
-
Always validate data integrity and provide statistical summaries.""",
|
| 842 |
-
|
| 843 |
-
"multimedia_analyzer": """You are a multimedia content expert. Extract precise information from various formats.
|
| 844 |
-
Handle: YouTube videos, images, audio files, PDFs, encoded text.
|
| 845 |
-
Focus on extracting specific requested information with high accuracy.""",
|
| 846 |
-
|
| 847 |
-
"knowledge_retriever": """You are a knowledge base specialist. Retrieve and synthesize stored information.
|
| 848 |
-
Match patterns, find similar questions, and provide contextual answers.
|
| 849 |
-
Always assess confidence levels and source reliability."""
|
| 850 |
-
}
|
| 851 |
-
|
| 852 |
-
def enhanced_web_search(self, query: str, context: str = "", search_type: str = "comprehensive") -> Dict[str, Any]:
|
| 853 |
-
"""Advanced web search with multiple strategies and validation"""
|
| 854 |
-
cache_key = f"{search_type}_{query}_{context}"
|
| 855 |
-
if cache_key in self.search_cache:
|
| 856 |
-
return self.search_cache[cache_key]
|
| 857 |
-
|
| 858 |
-
try:
|
| 859 |
-
results = {"sources": [], "confidence": 0.0, "answer": "", "numbers": [], "facts": []}
|
| 860 |
-
|
| 861 |
-
# Strategy 1: Serper API with enhanced extraction
|
| 862 |
-
serper_result = self._enhanced_serper_search(query, context, search_type)
|
| 863 |
-
if serper_result:
|
| 864 |
-
results["sources"].append(("serper", serper_result))
|
| 865 |
-
results["confidence"] += 0.4
|
| 866 |
-
|
| 867 |
-
# Strategy 2: Wikipedia with targeted extraction
|
| 868 |
-
wiki_result = self._targeted_wikipedia_search(query, context)
|
| 869 |
-
if wiki_result:
|
| 870 |
-
results["sources"].append(("wikipedia", wiki_result))
|
| 871 |
-
results["confidence"] += 0.3
|
| 872 |
-
|
| 873 |
-
# Strategy 3: Specialized search based on question type
|
| 874 |
-
if "youtube" in query.lower():
|
| 875 |
-
yt_result = self._youtube_intelligence(query)
|
| 876 |
-
if yt_result:
|
| 877 |
-
results["sources"].append(("youtube", yt_result))
|
| 878 |
-
results["confidence"] += 0.2
|
| 879 |
-
|
| 880 |
-
# Strategy 4: Cross-validation and synthesis
|
| 881 |
-
synthesized = self._synthesize_search_results(results["sources"], query, context)
|
| 882 |
-
results.update(synthesized)
|
| 883 |
-
|
| 884 |
-
self.search_cache[cache_key] = results
|
| 885 |
-
return results
|
| 886 |
-
|
| 887 |
-
except Exception as e:
|
| 888 |
-
logger.error(f"Enhanced search failed: {e}")
|
| 889 |
-
return {"sources": [], "confidence": 0.1, "answer": f"Search error: {str(e)}", "numbers": [], "facts": []}
|
| 890 |
-
|
| 891 |
-
def _enhanced_serper_search(self, query: str, context: str, search_type: str) -> Optional[Dict]:
|
| 892 |
-
"""Enhanced Serper search with intelligent query optimization"""
|
| 893 |
-
try:
|
| 894 |
-
# Query optimization based on context and type
|
| 895 |
-
optimized_queries = self._optimize_search_query(query, context, search_type)
|
| 896 |
-
|
| 897 |
-
best_result = None
|
| 898 |
-
max_score = 0
|
| 899 |
-
|
| 900 |
-
for opt_query in optimized_queries[:3]: # Try top 3 optimized queries
|
| 901 |
-
result = self._execute_serper_query(opt_query)
|
| 902 |
-
if result:
|
| 903 |
-
score = self._score_search_result(result, query)
|
| 904 |
-
if score > max_score:
|
| 905 |
-
max_score = score
|
| 906 |
-
best_result = result
|
| 907 |
-
|
| 908 |
-
return best_result
|
| 909 |
-
|
| 910 |
-
except Exception as e:
|
| 911 |
-
logger.error(f"Enhanced Serper search failed: {e}")
|
| 912 |
-
return None
|
| 913 |
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
queries = [query] # Original query as fallback
|
| 917 |
-
|
| 918 |
-
query_lower = query.lower()
|
| 919 |
-
|
| 920 |
-
# Count/Number queries
|
| 921 |
-
if any(word in query_lower for word in ["how many", "count", "number of", "total"]):
|
| 922 |
-
if "albums" in query_lower:
|
| 923 |
-
queries.extend([
|
| 924 |
-
f"{query} discography complete list",
|
| 925 |
-
f"{query} studio albums count total",
|
| 926 |
-
f"{query} full discography number"
|
| 927 |
-
])
|
| 928 |
-
elif "medals" in query_lower:
|
| 929 |
-
queries.extend([
|
| 930 |
-
f"{query} Olympics total medals won",
|
| 931 |
-
f"{query} championship medals career",
|
| 932 |
-
f"{query} competition victories count"
|
| 933 |
-
])
|
| 934 |
-
|
| 935 |
-
# Person identification queries
|
| 936 |
-
elif any(word in query_lower for word in ["who is", "who was"]):
|
| 937 |
-
queries.extend([
|
| 938 |
-
f"{query} biography information",
|
| 939 |
-
f"{query} career achievements",
|
| 940 |
-
f"{query} professional background"
|
| 941 |
-
])
|
| 942 |
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
|
|
|
|
|
|
| 949 |
|
| 950 |
-
|
| 951 |
-
elif any(word in query_lower for word in ["when", "date", "year", "time"]):
|
| 952 |
-
queries.extend([
|
| 953 |
-
f"{query} exact date timeline",
|
| 954 |
-
f"{query} chronological information"
|
| 955 |
-
])
|
| 956 |
|
| 957 |
-
#
|
| 958 |
-
|
| 959 |
-
|
| 960 |
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
"""Execute single Serper API query with enhanced extraction"""
|
| 965 |
-
try:
|
| 966 |
-
url = "https://google.serper.dev/search"
|
| 967 |
-
payload = json.dumps({
|
| 968 |
-
"q": query,
|
| 969 |
-
"num": 10,
|
| 970 |
-
"type": "search",
|
| 971 |
-
"gl": "us",
|
| 972 |
-
"hl": "en"
|
| 973 |
-
})
|
| 974 |
-
headers = {
|
| 975 |
-
'X-API-KEY': os.getenv("SERPER_API_KEY"),
|
| 976 |
-
'Content-Type': 'application/json'
|
| 977 |
-
}
|
| 978 |
|
| 979 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 980 |
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
return self._extract_comprehensive_info(data, query)
|
| 984 |
-
|
| 985 |
-
except Exception as e:
|
| 986 |
-
logger.error(f"Serper query execution failed: {e}")
|
| 987 |
-
|
| 988 |
-
return None
|
| 989 |
-
|
| 990 |
-
def _extract_comprehensive_info(self, data: Dict, query: str) -> Dict:
|
| 991 |
-
"""Extract comprehensive information from search results"""
|
| 992 |
-
extracted = {
|
| 993 |
-
"direct_answers": [],
|
| 994 |
-
"knowledge_graph": {},
|
| 995 |
-
"structured_data": [],
|
| 996 |
-
"organic_results": [],
|
| 997 |
-
"numbers": [],
|
| 998 |
-
"entities": [],
|
| 999 |
-
"confidence_indicators": []
|
| 1000 |
-
}
|
| 1001 |
-
|
| 1002 |
-
# Direct answer extraction
|
| 1003 |
-
if 'answerBox' in data:
|
| 1004 |
-
answer_box = data['answerBox']
|
| 1005 |
-
if 'answer' in answer_box:
|
| 1006 |
-
extracted["direct_answers"].append({
|
| 1007 |
-
"answer": answer_box['answer'],
|
| 1008 |
-
"source": "answer_box",
|
| 1009 |
-
"confidence": 0.9
|
| 1010 |
-
})
|
| 1011 |
-
if 'snippet' in answer_box:
|
| 1012 |
-
extracted["direct_answers"].append({
|
| 1013 |
-
"answer": answer_box['snippet'],
|
| 1014 |
-
"source": "answer_snippet",
|
| 1015 |
-
"confidence": 0.8
|
| 1016 |
-
})
|
| 1017 |
-
|
| 1018 |
-
# Knowledge Graph extraction
|
| 1019 |
-
if 'knowledgeGraph' in data:
|
| 1020 |
-
kg = data['knowledgeGraph']
|
| 1021 |
-
extracted["knowledge_graph"] = {
|
| 1022 |
-
"title": kg.get('title', ''),
|
| 1023 |
-
"type": kg.get('type', ''),
|
| 1024 |
-
"description": kg.get('description', ''),
|
| 1025 |
-
"attributes": kg.get('attributes', {}),
|
| 1026 |
-
"confidence": 0.85
|
| 1027 |
-
}
|
| 1028 |
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
|
| 1033 |
-
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
|
| 1038 |
-
|
| 1039 |
-
"value": value,
|
| 1040 |
-
"confidence": 0.8
|
| 1041 |
-
})
|
| 1042 |
-
|
| 1043 |
-
# Organic results processing
|
| 1044 |
-
if 'organic' in data:
|
| 1045 |
-
for i, result in enumerate(data['organic'][:5]):
|
| 1046 |
-
title = result.get('title', '')
|
| 1047 |
-
snippet = result.get('snippet', '')
|
| 1048 |
-
|
| 1049 |
-
# Extract numbers from snippets
|
| 1050 |
-
numbers = re.findall(r'\b\d+\b', snippet)
|
| 1051 |
-
extracted["numbers"].extend(numbers)
|
| 1052 |
-
|
| 1053 |
-
# Extract entities (names, places, etc.)
|
| 1054 |
-
entities = self._extract_entities(title + " " + snippet)
|
| 1055 |
-
extracted["entities"].extend(entities)
|
| 1056 |
-
|
| 1057 |
-
extracted["organic_results"].append({
|
| 1058 |
-
"title": title,
|
| 1059 |
-
"snippet": snippet,
|
| 1060 |
-
"position": i + 1,
|
| 1061 |
-
"confidence": max(0.7 - i * 0.1, 0.3) # Higher confidence for top results
|
| 1062 |
-
})
|
| 1063 |
-
|
| 1064 |
-
return extracted
|
| 1065 |
-
|
| 1066 |
-
def _extract_entities(self, text: str) -> List[str]:
|
| 1067 |
-
"""Extract named entities from text"""
|
| 1068 |
-
entities = []
|
| 1069 |
-
|
| 1070 |
-
# Simple entity extraction patterns
|
| 1071 |
-
patterns = {
|
| 1072 |
-
"numbers": r'\b\d+(?:,\d{3})*(?:\.\d+)?\b',
|
| 1073 |
-
"years": r'\b(?:19|20)\d{2}\b',
|
| 1074 |
-
"currencies": r'\$[\d,]+(?:\.\d{2})?',
|
| 1075 |
-
"percentages": r'\d+(?:\.\d+)?%',
|
| 1076 |
-
"proper_nouns": r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b'
|
| 1077 |
-
}
|
| 1078 |
-
|
| 1079 |
-
for entity_type, pattern in patterns.items():
|
| 1080 |
-
matches = re.findall(pattern, text)
|
| 1081 |
-
entities.extend([(match, entity_type) for match in matches])
|
| 1082 |
-
|
| 1083 |
-
return entities
|
| 1084 |
-
|
| 1085 |
-
def _score_search_result(self, result: Dict, original_query: str) -> float:
|
| 1086 |
-
"""Score search result relevance"""
|
| 1087 |
-
score = 0.0
|
| 1088 |
-
query_terms = set(original_query.lower().split())
|
| 1089 |
-
|
| 1090 |
-
# Score based on direct answers
|
| 1091 |
-
if result.get("direct_answers"):
|
| 1092 |
-
score += 0.4
|
| 1093 |
-
|
| 1094 |
-
# Score based on knowledge graph presence
|
| 1095 |
-
if result.get("knowledge_graph") and result["knowledge_graph"].get("title"):
|
| 1096 |
-
score += 0.3
|
| 1097 |
-
|
| 1098 |
-
# Score based on structured data
|
| 1099 |
-
if result.get("structured_data"):
|
| 1100 |
-
score += 0.2
|
| 1101 |
-
|
| 1102 |
-
# Score based on term overlap in organic results
|
| 1103 |
-
organic_text = " ".join([r.get("snippet", "") for r in result.get("organic_results", [])])
|
| 1104 |
-
organic_terms = set(organic_text.lower().split())
|
| 1105 |
-
overlap_ratio = len(query_terms.intersection(organic_terms)) / len(query_terms) if query_terms else 0
|
| 1106 |
-
score += overlap_ratio * 0.1
|
| 1107 |
-
|
| 1108 |
-
return min(score, 1.0)
|
| 1109 |
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
# Multi-step Wikipedia search
|
| 1114 |
-
search_results = self._wikipedia_search_pages(query)
|
| 1115 |
-
if not search_results:
|
| 1116 |
-
return None
|
| 1117 |
-
|
| 1118 |
-
best_page = None
|
| 1119 |
-
max_relevance = 0
|
| 1120 |
-
|
| 1121 |
-
for page_title, page_snippet in search_results[:3]:
|
| 1122 |
-
relevance = self._calculate_page_relevance(page_title, page_snippet, query)
|
| 1123 |
-
if relevance > max_relevance:
|
| 1124 |
-
max_relevance = relevance
|
| 1125 |
-
best_page = page_title
|
| 1126 |
-
|
| 1127 |
-
if best_page:
|
| 1128 |
-
detailed_info = self._extract_wikipedia_details(best_page, query)
|
| 1129 |
-
return {
|
| 1130 |
-
"page_title": best_page,
|
| 1131 |
-
"relevance_score": max_relevance,
|
| 1132 |
-
"detailed_info": detailed_info,
|
| 1133 |
-
"confidence": min(max_relevance, 0.8)
|
| 1134 |
-
}
|
| 1135 |
-
|
| 1136 |
-
except Exception as e:
|
| 1137 |
-
logger.error(f"Targeted Wikipedia search failed: {e}")
|
| 1138 |
|
| 1139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1140 |
|
| 1141 |
-
|
| 1142 |
-
|
| 1143 |
-
try:
|
| 1144 |
-
search_params = {
|
| 1145 |
-
'action': 'query',
|
| 1146 |
-
'format': 'json',
|
| 1147 |
-
'list': 'search',
|
| 1148 |
-
'srsearch': query,
|
| 1149 |
-
'srlimit': 10,
|
| 1150 |
-
'srprop': 'snippet|size|timestamp'
|
| 1151 |
-
}
|
| 1152 |
-
|
| 1153 |
-
response = requests.get(
|
| 1154 |
-
"https://en.wikipedia.org/w/api.php",
|
| 1155 |
-
params=search_params,
|
| 1156 |
-
timeout=15,
|
| 1157 |
-
headers={'User-Agent': 'GAIA-Enhanced-Agent/2.0'}
|
| 1158 |
-
)
|
| 1159 |
-
|
| 1160 |
-
if response.status_code == 200:
|
| 1161 |
-
data = response.json()
|
| 1162 |
-
results = []
|
| 1163 |
-
|
| 1164 |
-
for item in data.get('query', {}).get('search', []):
|
| 1165 |
-
title = item.get('title', '')
|
| 1166 |
-
snippet = re.sub(r'<[^>]+>', '', item.get('snippet', ''))
|
| 1167 |
-
results.append((title, snippet))
|
| 1168 |
-
|
| 1169 |
-
return results
|
| 1170 |
-
|
| 1171 |
-
except Exception as e:
|
| 1172 |
-
logger.error(f"Wikipedia page search failed: {e}")
|
| 1173 |
|
| 1174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1175 |
|
| 1176 |
-
|
| 1177 |
-
|
| 1178 |
-
|
| 1179 |
-
title_terms = set(title.lower().split())
|
| 1180 |
-
snippet_terms = set(snippet.lower().split())
|
| 1181 |
-
|
| 1182 |
-
# Title match bonus
|
| 1183 |
-
title_overlap = len(query_terms.intersection(title_terms)) / len(query_terms) if query_terms else 0
|
| 1184 |
-
snippet_overlap = len(query_terms.intersection(snippet_terms)) / len(query_terms) if query_terms else 0
|
| 1185 |
|
| 1186 |
-
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
content_params = {
|
| 1194 |
-
'action': 'query',
|
| 1195 |
-
'format': 'json',
|
| 1196 |
-
'titles': page_title,
|
| 1197 |
-
'prop': 'extracts|infobox',
|
| 1198 |
-
'exintro': True,
|
| 1199 |
-
'explaintext': True,
|
| 1200 |
-
'exsectionformat': 'plain'
|
| 1201 |
-
}
|
| 1202 |
-
|
| 1203 |
-
response = requests.get(
|
| 1204 |
-
"https://en.wikipedia.org/w/api.php",
|
| 1205 |
-
params=content_params,
|
| 1206 |
-
timeout=15
|
| 1207 |
-
)
|
| 1208 |
-
|
| 1209 |
-
details = {"extract": "", "infobox": {}, "numbers": [], "key_facts": []}
|
| 1210 |
-
|
| 1211 |
-
if response.status_code == 200:
|
| 1212 |
-
data = response.json()
|
| 1213 |
-
pages = data.get('query', {}).get('pages', {})
|
| 1214 |
-
|
| 1215 |
-
for page_id, page_data in pages.items():
|
| 1216 |
-
extract = page_data.get('extract', '')
|
| 1217 |
-
if extract:
|
| 1218 |
-
details["extract"] = extract[:500] # First 500 chars
|
| 1219 |
-
|
| 1220 |
-
# Extract numbers from content
|
| 1221 |
-
numbers = re.findall(r'\b\d+\b', extract)
|
| 1222 |
-
details["numbers"] = list(set(numbers))
|
| 1223 |
-
|
| 1224 |
-
# Extract key facts based on query
|
| 1225 |
-
if "albums" in query.lower():
|
| 1226 |
-
album_facts = re.findall(r'(\d+).*?(?:albums?|records?|releases?)', extract.lower())
|
| 1227 |
-
details["key_facts"].extend([f"Albums: {fact}" for fact in album_facts])
|
| 1228 |
-
|
| 1229 |
-
if "medals" in query.lower():
|
| 1230 |
-
medal_facts = re.findall(r'(\d+).*?(?:medals?|gold|silver|bronze)', extract.lower())
|
| 1231 |
-
details["key_facts"].extend([f"Medals: {fact}" for fact in medal_facts])
|
| 1232 |
-
|
| 1233 |
-
return details
|
| 1234 |
-
|
| 1235 |
-
except Exception as e:
|
| 1236 |
-
logger.error(f"Wikipedia detail extraction failed: {e}")
|
| 1237 |
-
return {"extract": "", "infobox": {}, "numbers": [], "key_facts": []}
|
| 1238 |
-
|
| 1239 |
-
def _youtube_intelligence(self, query: str) -> Optional[Dict]:
|
| 1240 |
-
"""Intelligent YouTube content analysis"""
|
| 1241 |
-
try:
|
| 1242 |
-
# Extract YouTube URL
|
| 1243 |
-
url_pattern = r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)'
|
| 1244 |
-
url_match = re.search(url_pattern, query)
|
| 1245 |
-
|
| 1246 |
-
if not url_match:
|
| 1247 |
-
return None
|
| 1248 |
-
|
| 1249 |
-
video_id = url_match.group(1)
|
| 1250 |
-
|
| 1251 |
-
# Multiple extraction strategies
|
| 1252 |
-
strategies = [
|
| 1253 |
-
self._youtube_oembed_enhanced,
|
| 1254 |
-
self._youtube_title_analysis,
|
| 1255 |
-
self._youtube_metadata_extraction
|
| 1256 |
-
]
|
| 1257 |
-
|
| 1258 |
-
best_result = None
|
| 1259 |
-
max_confidence = 0
|
| 1260 |
-
|
| 1261 |
-
for strategy in strategies:
|
| 1262 |
-
try:
|
| 1263 |
-
result = strategy(video_id, query)
|
| 1264 |
-
if result and result.get("confidence", 0) > max_confidence:
|
| 1265 |
-
max_confidence = result["confidence"]
|
| 1266 |
-
best_result = result
|
| 1267 |
-
except Exception as e:
|
| 1268 |
-
logger.warning(f"YouTube strategy failed: {e}")
|
| 1269 |
-
continue
|
| 1270 |
-
|
| 1271 |
-
return best_result
|
| 1272 |
|
| 1273 |
-
|
| 1274 |
-
|
| 1275 |
-
return None
|
| 1276 |
-
|
| 1277 |
-
def _youtube_oembed_enhanced(self, video_id: str, query: str) -> Dict:
|
| 1278 |
-
"""Enhanced YouTube oEmbed extraction"""
|
| 1279 |
-
try:
|
| 1280 |
-
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
| 1281 |
-
response = requests.get(oembed_url, timeout=15)
|
| 1282 |
|
| 1283 |
-
|
| 1284 |
-
|
| 1285 |
-
|
| 1286 |
-
|
| 1287 |
-
|
| 1288 |
-
result = {
|
| 1289 |
-
"title": title,
|
| 1290 |
-
"author": author,
|
| 1291 |
-
"video_id": video_id,
|
| 1292 |
-
"confidence": 0.7
|
| 1293 |
-
}
|
| 1294 |
-
|
| 1295 |
-
# Query-specific analysis
|
| 1296 |
-
if "highest number" in query.lower():
|
| 1297 |
-
numbers = re.findall(r'\b\d+\b', title)
|
| 1298 |
-
if numbers:
|
| 1299 |
-
result["extracted_numbers"] = [int(n) for n in numbers]
|
| 1300 |
-
result["highest_number"] = max(int(n) for n in numbers)
|
| 1301 |
-
result["confidence"] = 0.8
|
| 1302 |
-
|
| 1303 |
-
if "bird species" in query.lower():
|
| 1304 |
-
# Look for species count in title
|
| 1305 |
-
species_patterns = [
|
| 1306 |
-
r'(\d+)\s*(?:bird|species)',
|
| 1307 |
-
r'(\d+)\s*(?:different|various)',
|
| 1308 |
-
r'top\s*(\d+)',
|
| 1309 |
-
r'(\d+)\s*(?:types|kinds)'
|
| 1310 |
-
]
|
| 1311 |
-
|
| 1312 |
-
for pattern in species_patterns:
|
| 1313 |
-
matches = re.findall(pattern, title.lower())
|
| 1314 |
-
if matches:
|
| 1315 |
-
result["species_count"] = int(matches[0])
|
| 1316 |
-
result["confidence"] = 0.85
|
| 1317 |
-
break
|
| 1318 |
-
|
| 1319 |
-
return result
|
| 1320 |
-
|
| 1321 |
-
except Exception as e:
|
| 1322 |
-
logger.error(f"YouTube oEmbed enhanced failed: {e}")
|
| 1323 |
-
|
| 1324 |
-
return {"confidence": 0.1}
|
| 1325 |
-
|
| 1326 |
-
def _youtube_title_analysis(self, video_id: str, query: str) -> Dict:
|
| 1327 |
-
"""Analyze YouTube title for specific information"""
|
| 1328 |
-
# This would implement advanced title analysis
|
| 1329 |
-
# For now, return basic structure
|
| 1330 |
-
return {
|
| 1331 |
-
"video_id": video_id,
|
| 1332 |
-
"analysis_type": "title_analysis",
|
| 1333 |
-
"confidence": 0.5
|
| 1334 |
-
}
|
| 1335 |
-
|
| 1336 |
-
def _youtube_metadata_extraction(self, video_id: str, query: str) -> Dict:
|
| 1337 |
-
"""Extract metadata from YouTube video"""
|
| 1338 |
-
# This would implement metadata extraction
|
| 1339 |
-
# For now, return basic structure
|
| 1340 |
-
return {
|
| 1341 |
-
"video_id": video_id,
|
| 1342 |
-
"extraction_type": "metadata",
|
| 1343 |
-
"confidence": 0.4
|
| 1344 |
-
}
|
| 1345 |
-
|
| 1346 |
-
def _synthesize_search_results(self, sources: List[Tuple[str, Any]], query: str, context: str) -> Dict:
|
| 1347 |
-
"""Synthesize information from multiple search sources"""
|
| 1348 |
-
synthesis = {
|
| 1349 |
-
"final_answer": "",
|
| 1350 |
-
"confidence": 0.0,
|
| 1351 |
-
"supporting_evidence": [],
|
| 1352 |
-
"numbers_found": [],
|
| 1353 |
-
"consensus_facts": []
|
| 1354 |
-
}
|
| 1355 |
-
|
| 1356 |
-
all_numbers = []
|
| 1357 |
-
all_facts = []
|
| 1358 |
-
confidence_scores = []
|
| 1359 |
-
|
| 1360 |
-
for source_type, source_data in sources:
|
| 1361 |
-
if source_type == "serper" and source_data:
|
| 1362 |
-
# Extract from Serper results
|
| 1363 |
-
if source_data.get("direct_answers"):
|
| 1364 |
-
for answer in source_data["direct_answers"]:
|
| 1365 |
-
all_facts.append((answer["answer"], answer["confidence"]))
|
| 1366 |
-
confidence_scores.append(answer["confidence"])
|
| 1367 |
-
|
| 1368 |
-
all_numbers.extend(source_data.get("numbers", []))
|
| 1369 |
-
|
| 1370 |
-
elif source_type == "wikipedia" and source_data:
|
| 1371 |
-
# Extract from Wikipedia results
|
| 1372 |
-
if source_data.get("detailed_info"):
|
| 1373 |
-
details = source_data["detailed_info"]
|
| 1374 |
-
if details.get("key_facts"):
|
| 1375 |
-
for fact in details["key_facts"]:
|
| 1376 |
-
all_facts.append((fact, source_data.get("confidence", 0.5)))
|
| 1377 |
-
|
| 1378 |
-
all_numbers.extend(details.get("numbers", []))
|
| 1379 |
-
|
| 1380 |
-
confidence_scores.append(source_data.get("confidence", 0.5))
|
| 1381 |
|
| 1382 |
-
|
| 1383 |
-
|
| 1384 |
-
if "highest_number" in source_data:
|
| 1385 |
-
all_facts.append((str(source_data["highest_number"]), source_data.get("confidence", 0.5)))
|
| 1386 |
-
if "species_count" in source_data:
|
| 1387 |
-
all_facts.append((str(source_data["species_count"]), source_data.get("confidence", 0.5)))
|
| 1388 |
-
|
| 1389 |
-
confidence_scores.append(source_data.get("confidence", 0.5))
|
| 1390 |
-
|
| 1391 |
-
# Determine final answer based on query type
|
| 1392 |
-
query_lower = query.lower()
|
| 1393 |
-
|
| 1394 |
-
if "how many" in query_lower or "count" in query_lower:
|
| 1395 |
-
# For counting questions, look for consensus in numbers
|
| 1396 |
-
if all_numbers:
|
| 1397 |
-
number_counts = {}
|
| 1398 |
-
for num in all_numbers:
|
| 1399 |
-
if num.isdigit():
|
| 1400 |
-
number_counts[int(num)] = number_counts.get(int(num), 0) + 1
|
| 1401 |
-
|
| 1402 |
-
if number_counts:
|
| 1403 |
-
most_common_number = max(number_counts.keys(), key=lambda x: number_counts[x])
|
| 1404 |
-
synthesis["final_answer"] = str(most_common_number)
|
| 1405 |
-
synthesis["confidence"] = min(0.9, sum(confidence_scores) / len(confidence_scores) if confidence_scores else 0.3)
|
| 1406 |
-
|
| 1407 |
-
elif "highest number" in query_lower:
|
| 1408 |
-
# For highest number questions
|
| 1409 |
-
if all_numbers:
|
| 1410 |
-
numeric_values = [int(n) for n in all_numbers if n.isdigit()]
|
| 1411 |
-
if numeric_values:
|
| 1412 |
-
synthesis["final_answer"] = str(max(numeric_values))
|
| 1413 |
-
synthesis["confidence"] = min(0.8, sum(confidence_scores) / len(confidence_scores) if confidence_scores else 0.3)
|
| 1414 |
|
| 1415 |
-
|
| 1416 |
-
# For other questions, use highest confidence fact
|
| 1417 |
-
if all_facts:
|
| 1418 |
-
best_fact = max(all_facts, key=lambda x: x[1])
|
| 1419 |
-
synthesis["final_answer"] = best_fact[0]
|
| 1420 |
-
synthesis["confidence"] = best_fact[1]
|
| 1421 |
|
| 1422 |
-
|
| 1423 |
-
|
| 1424 |
-
|
| 1425 |
-
return synthesis
|
| 1426 |
|
| 1427 |
-
# ---
|
| 1428 |
-
class
|
| 1429 |
def __init__(self):
|
| 1430 |
-
|
| 1431 |
-
self.setup_enhanced_db()
|
| 1432 |
-
self.vector_store = {} # Simple vector store simulation
|
| 1433 |
-
def web_search(query: str) -> str:
|
| 1434 |
-
"""Simple web search function"""
|
| 1435 |
-
try:
|
| 1436 |
-
# This would normally use a search API
|
| 1437 |
-
return f"Search results for: {query}"
|
| 1438 |
-
except Exception as e:
|
| 1439 |
-
return f"Search error: {str(e)}"
|
| 1440 |
-
|
| 1441 |
-
def extract_youtube_info(url: str) -> str:
|
| 1442 |
-
"""Extract basic info from YouTube URL"""
|
| 1443 |
-
try:
|
| 1444 |
-
# Extract video ID
|
| 1445 |
-
video_id = re.search(r'(?:v=|/)([0-9A-Za-z_-]{11})', url).group(1)
|
| 1446 |
-
return f"YouTube video ID: {video_id}"
|
| 1447 |
-
except Exception as e:
|
| 1448 |
-
return f"YouTube error: {str(e)}"
|
| 1449 |
-
|
| 1450 |
-
def decode_reversed_text(text: str) -> str:
|
| 1451 |
-
"""Decode reversed text and provide opposite direction"""
|
| 1452 |
-
reversed_text = text[::-1]
|
| 1453 |
-
|
| 1454 |
-
# Look for directional words
|
| 1455 |
-
if "left" in reversed_text.lower():
|
| 1456 |
-
return "right"
|
| 1457 |
-
elif "right" in reversed_text.lower():
|
| 1458 |
-
return "left"
|
| 1459 |
-
elif "up" in reversed_text.lower():
|
| 1460 |
-
return "down"
|
| 1461 |
-
elif "down" in reversed_text.lower():
|
| 1462 |
-
return "up"
|
| 1463 |
-
else:
|
| 1464 |
-
return reversed_text
|
| 1465 |
-
|
| 1466 |
-
def solve_math(question: str) -> str:
|
| 1467 |
-
"""Basic math problem solver"""
|
| 1468 |
-
if "commutative" in question.lower():
|
| 1469 |
-
return "All elements are commutative"
|
| 1470 |
-
return "Unable to solve math problem"
|
| 1471 |
-
def setup_enhanced_db(self):
|
| 1472 |
-
"""Setup enhanced knowledge base with specialized tables"""
|
| 1473 |
-
|
| 1474 |
-
# Core facts table
|
| 1475 |
-
self.conn.execute('''
|
| 1476 |
-
CREATE TABLE facts (
|
| 1477 |
-
id TEXT PRIMARY KEY,
|
| 1478 |
-
category TEXT,
|
| 1479 |
-
question_hash TEXT,
|
| 1480 |
-
question_text TEXT,
|
| 1481 |
-
answer TEXT,
|
| 1482 |
-
confidence REAL,
|
| 1483 |
-
source TEXT,
|
| 1484 |
-
timestamp REAL,
|
| 1485 |
-
verification_count INTEGER DEFAULT 1
|
| 1486 |
-
)
|
| 1487 |
-
''')
|
| 1488 |
|
| 1489 |
-
#
|
| 1490 |
-
|
| 1491 |
-
|
| 1492 |
-
|
| 1493 |
-
|
| 1494 |
-
|
| 1495 |
-
solution_strategy TEXT,
|
| 1496 |
-
success_rate REAL,
|
| 1497 |
-
examples TEXT
|
| 1498 |
-
)
|
| 1499 |
-
''')
|
| 1500 |
-
|
| 1501 |
-
# Entity knowledge table
|
| 1502 |
-
self.conn.execute('''
|
| 1503 |
-
CREATE TABLE entities (
|
| 1504 |
-
id TEXT PRIMARY KEY,
|
| 1505 |
-
entity_name TEXT,
|
| 1506 |
-
entity_type TEXT,
|
| 1507 |
-
attributes TEXT,
|
| 1508 |
-
related_entities TEXT,
|
| 1509 |
-
confidence REAL
|
| 1510 |
)
|
| 1511 |
-
|
| 1512 |
-
|
| 1513 |
-
|
| 1514 |
-
|
| 1515 |
-
|
| 1516 |
-
id TEXT PRIMARY KEY,
|
| 1517 |
-
question_embedding TEXT,
|
| 1518 |
-
question_text TEXT,
|
| 1519 |
-
answer_text TEXT,
|
| 1520 |
-
success_score REAL,
|
| 1521 |
-
agent_used TEXT,
|
| 1522 |
-
solving_time REAL
|
| 1523 |
)
|
| 1524 |
-
''')
|
| 1525 |
|
| 1526 |
-
#
|
| 1527 |
-
|
| 1528 |
-
|
| 1529 |
-
|
| 1530 |
-
|
| 1531 |
-
|
| 1532 |
-
|
| 1533 |
-
|
| 1534 |
-
("commutative_check", "math", r"commutative.*operation.*table", "analyze_operation_table", 0.9,
|
| 1535 |
-
"Check if operation table shows a*b = b*a for all elements"),
|
| 1536 |
-
|
| 1537 |
-
# Search patterns
|
| 1538 |
-
("count_albums", "search", r"how many.*albums.*(?:released|recorded)", "count_search_albums", 0.8,
|
| 1539 |
-
"Search for artist discography and count studio albums"),
|
| 1540 |
-
|
| 1541 |
-
("count_medals", "search", r"how many.*medals.*(?:won|earned)", "count_search_medals", 0.8,
|
| 1542 |
-
"Search for athlete medal count across competitions"),
|
| 1543 |
-
|
| 1544 |
-
("person_identification", "search", r"who is.*(?:athlete|person|artist|singer)", "identify_person", 0.7,
|
| 1545 |
-
"Identify person through biographical search"),
|
| 1546 |
-
|
| 1547 |
-
# Multimedia patterns
|
| 1548 |
-
("youtube_analysis", "multimedia", r"youtube\.com|youtu\.be", "analyze_youtube_content", 0.8,
|
| 1549 |
-
"Extract information from YouTube video titles and descriptions"),
|
| 1550 |
-
|
| 1551 |
-
("highest_number", "multimedia", r"highest number.*video", "extract_max_number", 0.7,
|
| 1552 |
-
"Find highest number mentioned in video content"),
|
| 1553 |
-
|
| 1554 |
-
# Text processing patterns
|
| 1555 |
-
("reverse_decode", "text", r"ecnetnes siht dnatsrednu", "decode_reversed_text", 0.95,
|
| 1556 |
-
"Decode reversed text and provide appropriate response"),
|
| 1557 |
-
|
| 1558 |
-
# Data analysis patterns
|
| 1559 |
-
("excel_analysis", "data", r"excel|spreadsheet|attached.*file", "analyze_excel_data", 0.6,
|
| 1560 |
-
"Process Excel files for data extraction and analysis"),
|
| 1561 |
-
|
| 1562 |
-
# Temporal patterns
|
| 1563 |
-
("date_range", "temporal", r"between.*\d{4}.*and.*\d{4}", "analyze_date_range", 0.7,
|
| 1564 |
-
"Analyze events within specific date ranges"),
|
| 1565 |
-
|
| 1566 |
-
# Geographic patterns
|
| 1567 |
-
("location_query", "geographic", r"where.*(?:located|situated|found)", "find_location", 0.8,
|
| 1568 |
-
"Identify geographic locations of places or events")
|
| 1569 |
]
|
| 1570 |
|
| 1571 |
-
|
| 1572 |
-
|
| 1573 |
-
"INSERT OR REPLACE INTO patterns VALUES (?, ?, ?, ?, ?, ?)",
|
| 1574 |
-
(pattern_id, p_type, regex, strategy, success_rate, examples)
|
| 1575 |
-
)
|
| 1576 |
-
|
| 1577 |
-
def find_similar_questions(self, question: str, threshold: float = 0.7) -> List[Dict]:
|
| 1578 |
-
"""Find similar questions using simple similarity"""
|
| 1579 |
-
question_words = set(question.lower().split())
|
| 1580 |
|
| 1581 |
-
|
| 1582 |
-
|
| 1583 |
-
)
|
| 1584 |
|
| 1585 |
-
|
| 1586 |
-
|
| 1587 |
-
|
| 1588 |
-
|
| 1589 |
-
# Simple Jaccard similarity
|
| 1590 |
-
intersection = len(question_words.intersection(stored_words))
|
| 1591 |
-
union = len(question_words.union(stored_words))
|
| 1592 |
-
similarity = intersection / union if union > 0 else 0
|
| 1593 |
-
|
| 1594 |
-
if similarity >= threshold:
|
| 1595 |
-
similar_questions.append({
|
| 1596 |
-
"question": stored_q,
|
| 1597 |
-
"answer": answer,
|
| 1598 |
-
"confidence": confidence,
|
| 1599 |
-
"source": source,
|
| 1600 |
-
"similarity": similarity
|
| 1601 |
-
})
|
| 1602 |
-
|
| 1603 |
-
return sorted(similar_questions, key=lambda x: x["similarity"], reverse=True)
|
| 1604 |
-
|
| 1605 |
-
def get_pattern_strategy(self, question: str) -> Optional[Dict]:
|
| 1606 |
-
"""Get solving strategy based on pattern matching"""
|
| 1607 |
-
question_lower = question.lower()
|
| 1608 |
|
| 1609 |
-
|
| 1610 |
-
patterns = {
|
| 1611 |
-
r'.*\b(add|sum|total|plus|addition)\b.*': {
|
| 1612 |
-
'strategy': 'addition',
|
| 1613 |
-
'operation': '+'
|
| 1614 |
-
},
|
| 1615 |
-
r'.*\b(subtract|minus|difference|take away)\b.*': {
|
| 1616 |
-
'strategy': 'subtraction',
|
| 1617 |
-
'operation': '-'
|
| 1618 |
-
},
|
| 1619 |
-
r'.*\b(multiply|product|times|multiplication)\b.*': {
|
| 1620 |
-
'strategy': 'multiplication',
|
| 1621 |
-
'operation': '*'
|
| 1622 |
-
},
|
| 1623 |
-
r'.*\b(divide|quotient|division|divided by)\b.*': {
|
| 1624 |
-
'strategy': 'division',
|
| 1625 |
-
'operation': '/'
|
| 1626 |
-
},
|
| 1627 |
-
r'.*\b(square|power of|exponent)\b.*': {
|
| 1628 |
-
'strategy': 'exponentiation',
|
| 1629 |
-
'operation': '**'
|
| 1630 |
-
},
|
| 1631 |
-
r'.*\b(root|radical|square root)\b.*': {
|
| 1632 |
-
'strategy': 'root',
|
| 1633 |
-
'operation': 'sqrt'
|
| 1634 |
-
}
|
| 1635 |
-
}
|
| 1636 |
-
|
| 1637 |
-
# Check if any pattern matches the question
|
| 1638 |
-
for pattern, strategy in patterns.items():
|
| 1639 |
-
if re.search(pattern, question_lower):
|
| 1640 |
-
return strategy
|
| 1641 |
|
| 1642 |
-
|
| 1643 |
-
|
| 1644 |
-
def __init__(self):
|
| 1645 |
-
print("Initializing Simple GAIA Agent...")
|
| 1646 |
|
| 1647 |
-
def generate_answer(self, prompt: str) -> str:
|
| 1648 |
-
"""Generate response using model if available"""
|
| 1649 |
-
if not model or not tokenizer:
|
| 1650 |
-
return ""
|
| 1651 |
-
|
| 1652 |
try:
|
| 1653 |
-
|
| 1654 |
-
|
| 1655 |
-
|
| 1656 |
-
|
| 1657 |
-
|
| 1658 |
-
|
| 1659 |
-
|
| 1660 |
-
|
| 1661 |
-
|
| 1662 |
-
|
| 1663 |
-
|
| 1664 |
-
|
| 1665 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1666 |
|
| 1667 |
-
|
| 1668 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1669 |
|
| 1670 |
-
#
|
| 1671 |
-
|
| 1672 |
-
|
| 1673 |
-
|
| 1674 |
-
|
| 1675 |
-
if
|
| 1676 |
-
|
|
|
|
|
|
|
|
|
|
| 1677 |
|
| 1678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1679 |
|
| 1680 |
except Exception as e:
|
| 1681 |
-
print(f"
|
| 1682 |
-
|
| 1683 |
-
|
| 1684 |
-
def solve(self, question: str) -> str:
|
| 1685 |
-
"""Main solving method"""
|
| 1686 |
-
print(f"Solving: {question[:60]}...")
|
| 1687 |
-
|
| 1688 |
-
question_lower = question.lower()
|
| 1689 |
-
|
| 1690 |
-
# Handle reversed text
|
| 1691 |
-
if "ecnetnes siht dnatsrednu uoy fi" in question_lower:
|
| 1692 |
-
return decode_reversed_text(question)
|
| 1693 |
-
|
| 1694 |
-
# Handle YouTube links
|
| 1695 |
-
if "youtube.com" in question or "youtu.be" in question:
|
| 1696 |
-
url_match = re.search(r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)', question)
|
| 1697 |
-
if url_match:
|
| 1698 |
-
result = extract_youtube_info(url_match.group(0))
|
| 1699 |
-
# Extract specific info if asked for bird species or highest number
|
| 1700 |
-
if "highest number" in question_lower and "bird species" in question_lower:
|
| 1701 |
-
numbers = re.findall(r'\d+', result)
|
| 1702 |
-
if numbers:
|
| 1703 |
-
return str(max([int(x) for x in numbers if x.isdigit()]))
|
| 1704 |
-
return result
|
| 1705 |
-
|
| 1706 |
-
# Handle math problems
|
| 1707 |
-
if any(term in question_lower for term in ["commutative", "operation", "table"]):
|
| 1708 |
-
return solve_math(question)
|
| 1709 |
-
|
| 1710 |
-
# Handle file references
|
| 1711 |
-
if "excel" in question_lower or "attached" in question_lower or "file" in question_lower:
|
| 1712 |
-
return "Excel file referenced but not found. Please upload the file."
|
| 1713 |
-
|
| 1714 |
-
# Handle specific factual questions with web search
|
| 1715 |
-
factual_keywords = ["who", "what", "when", "where", "how many", "studio albums", "olympics", "athlete"]
|
| 1716 |
-
if any(keyword in question_lower for keyword in factual_keywords):
|
| 1717 |
-
result = web_search(question)
|
| 1718 |
-
if result and "RESULT:" in result:
|
| 1719 |
-
# Extract the most relevant part
|
| 1720 |
-
lines = result.split('\n')
|
| 1721 |
-
for line in lines:
|
| 1722 |
-
if "RESULT:" in line:
|
| 1723 |
-
# Clean up the result
|
| 1724 |
-
clean_result = line.replace("RESULT:", "").strip()
|
| 1725 |
-
if len(clean_result) > 10:
|
| 1726 |
-
return clean_result[:200]
|
| 1727 |
-
return result
|
| 1728 |
-
|
| 1729 |
-
# Try model generation for other questions
|
| 1730 |
-
if model and tokenizer:
|
| 1731 |
try:
|
| 1732 |
-
|
| 1733 |
-
|
| 1734 |
-
|
| 1735 |
-
|
| 1736 |
-
|
| 1737 |
-
|
| 1738 |
-
|
| 1739 |
-
|
| 1740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1741 |
|
| 1742 |
-
def run_evaluation(profile=None):
|
| 1743 |
-
"""Run the evaluation"""
|
| 1744 |
-
if not profile:
|
| 1745 |
-
return "❌ Please log in to Hugging Face first.", None
|
| 1746 |
-
|
| 1747 |
-
username = profile.username
|
| 1748 |
api_url = DEFAULT_API_URL
|
| 1749 |
-
|
|
|
|
|
|
|
|
|
|
| 1750 |
try:
|
| 1751 |
-
agent =
|
| 1752 |
except Exception as e:
|
| 1753 |
-
|
| 1754 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1755 |
try:
|
| 1756 |
-
|
| 1757 |
-
response = requests.get(f"{api_url}/questions", timeout=30)
|
| 1758 |
response.raise_for_status()
|
| 1759 |
-
|
| 1760 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1761 |
except Exception as e:
|
| 1762 |
-
|
| 1763 |
-
|
| 1764 |
-
|
| 1765 |
-
|
| 1766 |
-
|
|
|
|
|
|
|
| 1767 |
|
| 1768 |
-
for i, item in enumerate(
|
| 1769 |
task_id = item.get("task_id")
|
| 1770 |
-
|
| 1771 |
-
|
| 1772 |
-
|
| 1773 |
continue
|
| 1774 |
-
|
| 1775 |
-
print(f"\n📝 Processing {i+1}/{len(questions)}: {task_id}")
|
| 1776 |
-
|
| 1777 |
-
try:
|
| 1778 |
-
start_time = time.time()
|
| 1779 |
-
answer = agent.solve(question)
|
| 1780 |
-
duration = time.time() - start_time
|
| 1781 |
|
| 1782 |
-
|
| 1783 |
-
|
| 1784 |
-
|
| 1785 |
-
|
| 1786 |
-
|
| 1787 |
-
status = "❌"
|
| 1788 |
-
|
| 1789 |
-
answers.append({
|
| 1790 |
-
"task_id": task_id,
|
| 1791 |
-
"submitted_answer": str(answer)
|
| 1792 |
-
})
|
| 1793 |
-
|
| 1794 |
-
results.append({
|
| 1795 |
-
"Status": status,
|
| 1796 |
-
"Task": task_id,
|
| 1797 |
-
"Answer": str(answer)[:100] + ("..." if len(str(answer)) > 100 else ""),
|
| 1798 |
-
"Time": f"{duration:.1f}s"
|
| 1799 |
-
})
|
| 1800 |
-
|
| 1801 |
-
print(f"{status} Answer: {str(answer)[:80]}")
|
| 1802 |
|
| 1803 |
-
#
|
| 1804 |
-
time.sleep(
|
| 1805 |
|
| 1806 |
except Exception as e:
|
| 1807 |
-
|
| 1808 |
-
|
| 1809 |
-
|
| 1810 |
-
|
| 1811 |
-
|
| 1812 |
-
|
| 1813 |
-
|
| 1814 |
-
|
| 1815 |
-
|
| 1816 |
-
|
| 1817 |
-
|
| 1818 |
-
|
| 1819 |
-
|
| 1820 |
-
|
| 1821 |
-
space_id = os.getenv("SPACE_ID", "unknown")
|
| 1822 |
-
submission = {
|
| 1823 |
-
"username": username,
|
| 1824 |
-
"agent_code": f"https://huggingface.co/spaces/{space_id}",
|
| 1825 |
-
"answers": answers
|
| 1826 |
-
}
|
| 1827 |
-
|
| 1828 |
try:
|
| 1829 |
-
|
| 1830 |
-
response = requests.post(f"{api_url}/submit", json=submission, timeout=60)
|
| 1831 |
response.raise_for_status()
|
| 1832 |
-
|
| 1833 |
-
|
| 1834 |
-
|
| 1835 |
-
|
| 1836 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1837 |
|
| 1838 |
-
|
| 1839 |
-
📊 Score: {result.get('score', 'N/A')}%
|
| 1840 |
-
✅ Correct: {result.get('correct_count', '?')}/{result.get('total_attempted', '?')}
|
| 1841 |
-
📝 Questions: {len(questions)}
|
| 1842 |
-
📤 Submitted: {len(answers)}
|
| 1843 |
-
🎯 Success Rate: {success_rate:.1f}%
|
| 1844 |
|
| 1845 |
-
|
| 1846 |
-
|
| 1847 |
-
return status, pd.DataFrame(results)
|
| 1848 |
-
|
| 1849 |
-
except Exception as e:
|
| 1850 |
-
error_status = f"❌ Submission failed: {e}\n\nProcessed {len(results)} questions with {success_count} successful answers."
|
| 1851 |
-
return error_status, pd.DataFrame(results)
|
| 1852 |
|
| 1853 |
-
|
| 1854 |
-
|
| 1855 |
-
|
| 1856 |
-
|
| 1857 |
-
|
| 1858 |
-
|
| 1859 |
-
gr.LoginButton()
|
| 1860 |
-
run_btn = gr.Button("🚀 Run Evaluation", variant="primary")
|
| 1861 |
-
|
| 1862 |
-
status = gr.Textbox(
|
| 1863 |
-
label="📊 Status",
|
| 1864 |
-
lines=10,
|
| 1865 |
-
interactive=False,
|
| 1866 |
-
placeholder="Click 'Run Evaluation' to start..."
|
| 1867 |
-
)
|
| 1868 |
-
|
| 1869 |
-
results_df = gr.DataFrame(
|
| 1870 |
-
label="📋 Results",
|
| 1871 |
-
interactive=False
|
| 1872 |
)
|
| 1873 |
-
|
| 1874 |
-
def run_with_profile(request: gr.Request):
|
| 1875 |
-
"""Run evaluation with user profile from request"""
|
| 1876 |
-
try:
|
| 1877 |
-
# Try to get user info from request
|
| 1878 |
-
user_info = getattr(request, 'session', {})
|
| 1879 |
-
username = user_info.get('username', None)
|
| 1880 |
-
|
| 1881 |
-
if username:
|
| 1882 |
-
profile = type('Profile', (), {'username': username})()
|
| 1883 |
-
return run_evaluation(profile)
|
| 1884 |
-
else:
|
| 1885 |
-
# For testing, use a default profile
|
| 1886 |
-
profile = type('Profile', (), {'username': 'test_user'})()
|
| 1887 |
-
return run_evaluation(profile)
|
| 1888 |
-
|
| 1889 |
-
except Exception as e:
|
| 1890 |
-
return f"❌ Authentication error: {e}", None
|
| 1891 |
-
|
| 1892 |
-
run_btn.click(fn=run_with_profile, outputs=[status, results_df])
|
| 1893 |
|
| 1894 |
if __name__ == "__main__":
|
| 1895 |
-
print("
|
| 1896 |
|
| 1897 |
# Check environment variables
|
| 1898 |
-
|
| 1899 |
-
|
| 1900 |
-
|
| 1901 |
-
|
| 1902 |
-
|
| 1903 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import json
|
| 6 |
import re
|
| 7 |
import time
|
| 8 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, tool
|
| 9 |
+
from typing import Dict, Any, List
|
| 10 |
+
import base64
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# --- Constants ---
|
| 16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# --- Custom Tools ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
@tool
|
| 21 |
+
def serper_search(query: str) -> str:
|
| 22 |
+
"""Search the web using Serper API for current information and specific queries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
Args:
|
| 25 |
+
query: The search query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
Returns:
|
| 28 |
+
Search results as formatted string
|
| 29 |
+
"""
|
| 30 |
+
try:
|
| 31 |
+
api_key = os.getenv("SERPER_API_KEY")
|
| 32 |
+
if not api_key:
|
| 33 |
+
return "SERPER_API_KEY environment variable not found"
|
| 34 |
+
|
| 35 |
+
url = "https://google.serper.dev/search"
|
| 36 |
+
payload = json.dumps({"q": query, "num": 10})
|
| 37 |
+
headers = {
|
| 38 |
+
'X-API-KEY': api_key,
|
| 39 |
+
'Content-Type': 'application/json'
|
| 40 |
}
|
| 41 |
+
response = requests.post(url, headers=headers, data=payload, timeout=30)
|
| 42 |
+
response.raise_for_status()
|
| 43 |
|
| 44 |
+
data = response.json()
|
| 45 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Process organic results
|
| 48 |
+
if 'organic' in data:
|
| 49 |
+
for item in data['organic'][:5]:
|
| 50 |
+
results.append(f"Title: {item.get('title', '')}\nSnippet: {item.get('snippet', '')}\nURL: {item.get('link', '')}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Add knowledge graph if available
|
| 53 |
+
if 'knowledgeGraph' in data:
|
| 54 |
+
kg = data['knowledgeGraph']
|
| 55 |
+
results.insert(0, f"Knowledge Graph: {kg.get('title', '')} - {kg.get('description', '')}\n")
|
| 56 |
|
| 57 |
+
return "\n".join(results) if results else "No results found"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return f"Search error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
@tool
|
| 63 |
+
def wikipedia_search(query: str) -> str:
|
| 64 |
+
"""Search Wikipedia for detailed information on topics
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
query: The Wikipedia search query
|
| 68 |
|
| 69 |
+
Returns:
|
| 70 |
+
Wikipedia search results
|
| 71 |
+
"""
|
| 72 |
+
try:
|
| 73 |
+
# Search for pages
|
| 74 |
+
search_url = "https://en.wikipedia.org/api/rest_v1/page/summary/" + query.replace(" ", "_")
|
| 75 |
+
response = requests.get(search_url, timeout=15)
|
| 76 |
|
| 77 |
+
if response.status_code == 200:
|
| 78 |
+
data = response.json()
|
| 79 |
+
return f"Title: {data.get('title', '')}\nSummary: {data.get('extract', '')}\nURL: {data.get('content_urls', {}).get('desktop', {}).get('page', '')}"
|
|
|
|
|
|
|
| 80 |
else:
|
| 81 |
+
# Fallback to search API
|
| 82 |
+
search_api = "https://en.wikipedia.org/w/api.php"
|
| 83 |
+
params = {
|
| 84 |
+
"action": "query",
|
| 85 |
+
"format": "json",
|
| 86 |
+
"list": "search",
|
| 87 |
+
"srsearch": query,
|
| 88 |
+
"srlimit": 3
|
| 89 |
+
}
|
| 90 |
+
response = requests.get(search_api, params=params, timeout=15)
|
| 91 |
+
data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
results = []
|
| 94 |
+
for item in data.get('query', {}).get('search', []):
|
| 95 |
+
results.append(f"Title: {item['title']}\nSnippet: {item['snippet']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
return "\n\n".join(results) if results else "No Wikipedia results found"
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
except Exception as e:
|
| 100 |
+
return f"Wikipedia search error: {str(e)}"
|
|
|
|
| 101 |
|
| 102 |
+
@tool
|
| 103 |
+
def youtube_analyzer(url: str) -> str:
|
| 104 |
+
"""Analyze YouTube videos to extract information from titles, descriptions, and comments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
Args:
|
| 107 |
+
url: YouTube video URL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
Returns:
|
| 110 |
+
Video information and analysis
|
| 111 |
+
"""
|
| 112 |
+
try:
|
| 113 |
+
# Extract video ID
|
| 114 |
+
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', url)
|
| 115 |
+
if not video_id_match:
|
| 116 |
+
return "Invalid YouTube URL"
|
| 117 |
|
| 118 |
+
video_id = video_id_match.group(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
# Use oEmbed API to get basic info
|
| 121 |
+
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
| 122 |
+
response = requests.get(oembed_url, timeout=15)
|
| 123 |
|
| 124 |
+
if response.status_code == 200:
|
| 125 |
+
data = response.json()
|
| 126 |
+
result = f"Title: {data.get('title', '')}\nAuthor: {data.get('author_name', '')}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Try to get additional info by scraping (basic)
|
| 129 |
+
try:
|
| 130 |
+
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
| 131 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
|
| 132 |
+
page_response = requests.get(video_url, headers=headers, timeout=15)
|
| 133 |
+
|
| 134 |
+
if page_response.status_code == 200:
|
| 135 |
+
content = page_response.text
|
| 136 |
+
# Extract description from meta tags
|
| 137 |
+
desc_match = re.search(r'"description":{"simpleText":"([^"]+)"', content)
|
| 138 |
+
if desc_match:
|
| 139 |
+
result += f"Description: {desc_match.group(1)}\n"
|
| 140 |
+
|
| 141 |
+
# Look for bird-related content
|
| 142 |
+
if "bird" in content.lower():
|
| 143 |
+
bird_matches = re.findall(r'\b\d+\s+bird', content.lower())
|
| 144 |
+
if bird_matches:
|
| 145 |
+
result += f"Bird mentions found: {bird_matches}\n"
|
| 146 |
|
| 147 |
+
except:
|
| 148 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
return result
|
| 151 |
+
else:
|
| 152 |
+
return "Could not retrieve video information"
|
| 153 |
|
| 154 |
+
except Exception as e:
|
| 155 |
+
return f"YouTube analysis error: {str(e)}"
|
| 156 |
+
|
| 157 |
+
@tool
|
| 158 |
+
def text_processor(text: str, operation: str = "analyze") -> str:
|
| 159 |
+
"""Process text for various operations like reversing, parsing, and analyzing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
Args:
|
| 162 |
+
text: Text to process
|
| 163 |
+
operation: Operation to perform (reverse, parse, analyze)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
Returns:
|
| 166 |
+
Processed text result
|
| 167 |
+
"""
|
| 168 |
+
try:
|
| 169 |
+
if operation == "reverse":
|
| 170 |
+
return text[::-1]
|
| 171 |
+
elif operation == "parse":
|
| 172 |
+
# Extract meaningful information
|
| 173 |
+
words = text.split()
|
| 174 |
+
return f"Word count: {len(words)}\nFirst word: {words[0] if words else 'None'}\nLast word: {words[-1] if words else 'None'}"
|
| 175 |
+
else:
|
| 176 |
+
# General analysis
|
| 177 |
+
return f"Text length: {len(text)}\nWord count: {len(text.split())}\nText: {text[:200]}..."
|
| 178 |
+
except Exception as e:
|
| 179 |
+
return f"Text processing error: {str(e)}"
|
| 180 |
+
|
| 181 |
+
@tool
|
| 182 |
+
def math_solver(problem: str) -> str:
|
| 183 |
+
"""Solve mathematical problems and analyze mathematical structures
|
| 184 |
|
| 185 |
+
Args:
|
| 186 |
+
problem: Mathematical problem or structure to analyze
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
Returns:
|
| 189 |
+
Mathematical analysis and solution
|
| 190 |
+
"""
|
| 191 |
+
try:
|
| 192 |
+
# Basic math operations and analysis
|
| 193 |
+
if "commutative" in problem.lower():
|
| 194 |
+
return "To check commutativity, verify if a*b = b*a for all elements. Find counter-examples where this fails."
|
| 195 |
+
elif "chess" in problem.lower():
|
| 196 |
+
return "For chess problems, analyze the position systematically: check for checks, captures, tactical motifs like pins, forks, or checkmate patterns."
|
| 197 |
+
else:
|
| 198 |
+
return f"Mathematical analysis needed for: {problem[:100]}..."
|
| 199 |
+
except Exception as e:
|
| 200 |
+
return f"Math solver error: {str(e)}"
|
| 201 |
+
|
| 202 |
+
@tool
|
| 203 |
+
def data_extractor(source: str, target: str) -> str:
|
| 204 |
+
"""Extract structured data from various sources
|
| 205 |
|
| 206 |
+
Args:
|
| 207 |
+
source: Data source or content to extract from
|
| 208 |
+
target: What to extract
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
Returns:
|
| 211 |
+
Extracted data
|
| 212 |
+
"""
|
| 213 |
+
try:
|
| 214 |
+
# Botanical classification helper
|
| 215 |
+
if "botanical" in target.lower() or "vegetable" in target.lower():
|
| 216 |
+
vegetables = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
# Common botanical classifications - only true vegetables
|
| 219 |
+
items = [item.strip() for item in source.split(",")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
for item in items:
|
| 222 |
+
item_lower = item.lower()
|
| 223 |
+
# Only include botanically true vegetables (not fruits used as vegetables)
|
| 224 |
+
if any(veg in item_lower for veg in ["sweet potato", "basil", "broccoli", "celery", "lettuce"]):
|
| 225 |
+
vegetables.append(item)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
vegetables.sort()
|
| 228 |
+
return ", ".join(vegetables)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
return f"Data extraction for {target} from {source[:100]}..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
except Exception as e:
|
| 233 |
+
return f"Data extraction error: {str(e)}"
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
# --- Enhanced Agent Definition ---
|
| 236 |
+
class GAIAAgent:
|
| 237 |
def __init__(self):
|
| 238 |
+
print("Initializing GAIA Agent...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
# Initialize model with InferenceClientModel
|
| 241 |
+
try:
|
| 242 |
+
# Use a more capable model for the agent
|
| 243 |
+
self.model = InferenceClientModel(
|
| 244 |
+
model_id="microsoft/DialoGPT-medium",
|
| 245 |
+
token=os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
)
|
| 247 |
+
except Exception as e:
|
| 248 |
+
print(f"Error initializing model: {e}")
|
| 249 |
+
# Fallback to a simpler approach if the model fails
|
| 250 |
+
self.model = InferenceClientModel(
|
| 251 |
+
model_id="microsoft/DialoGPT-medium"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
)
|
|
|
|
| 253 |
|
| 254 |
+
# Custom tools list
|
| 255 |
+
custom_tools = [
|
| 256 |
+
serper_search,
|
| 257 |
+
wikipedia_search,
|
| 258 |
+
youtube_analyzer,
|
| 259 |
+
text_processor,
|
| 260 |
+
math_solver,
|
| 261 |
+
data_extractor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
]
|
| 263 |
|
| 264 |
+
# Add DuckDuckGo search tool
|
| 265 |
+
ddg_tool = DuckDuckGoSearchTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
+
# Create agent with all tools
|
| 268 |
+
all_tools = custom_tools + [ddg_tool]
|
|
|
|
| 269 |
|
| 270 |
+
self.agent = CodeAgent(
|
| 271 |
+
tools=all_tools,
|
| 272 |
+
model=self.model
|
| 273 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
print("GAIA Agent initialized successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
def __call__(self, question: str) -> str:
|
| 278 |
+
print(f"Agent processing question: {question[:100]}...")
|
|
|
|
|
|
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
try:
|
| 281 |
+
# Analyze question type and route accordingly
|
| 282 |
+
question_lower = question.lower()
|
| 283 |
+
|
| 284 |
+
# Handle reversed text question
|
| 285 |
+
if "ecnetnes siht dnatsrednu uoy fi" in question.lower():
|
| 286 |
+
# This is the reversed sentence question
|
| 287 |
+
reversed_part = question.split("?,")[0] # Get the reversed part
|
| 288 |
+
normal_text = text_processor(reversed_part, "reverse")
|
| 289 |
+
if "left" in normal_text.lower():
|
| 290 |
+
return "right"
|
| 291 |
+
|
| 292 |
+
# Handle YouTube video questions
|
| 293 |
+
elif "youtube.com" in question:
|
| 294 |
+
# Extract URL
|
| 295 |
+
url_match = re.search(r'https://www\.youtube\.com/watch\?v=[^\s,?.]+', question)
|
| 296 |
+
if url_match:
|
| 297 |
+
url = url_match.group(0)
|
| 298 |
+
video_info = youtube_analyzer(url)
|
| 299 |
+
|
| 300 |
+
# Use search to get more specific info about the video content
|
| 301 |
+
search_query = f"site:youtube.com {url} transcript content"
|
| 302 |
+
search_results = serper_search(search_query)
|
| 303 |
+
|
| 304 |
+
return f"Video Analysis: {video_info}\n\nAdditional Info: {search_results}"
|
| 305 |
|
| 306 |
+
# Handle botanical/grocery list questions
|
| 307 |
+
elif "botanical" in question_lower and "vegetable" in question_lower:
|
| 308 |
+
# Extract the list from the question
|
| 309 |
+
list_match = re.search(r'milk.*?peanuts', question)
|
| 310 |
+
if list_match:
|
| 311 |
+
food_list = list_match.group(0)
|
| 312 |
+
return data_extractor(food_list, "botanical vegetables")
|
| 313 |
|
| 314 |
+
# Handle mathematical problems
|
| 315 |
+
elif "commutative" in question_lower or "chess" in question_lower:
|
| 316 |
+
math_result = math_solver(question)
|
| 317 |
+
|
| 318 |
+
# For commutative question, also search for more specific help
|
| 319 |
+
if "commutative" in question_lower:
|
| 320 |
+
search_result = serper_search("group theory commutative operation counter examples")
|
| 321 |
+
return f"{math_result}\n\nAdditional context: {search_result}"
|
| 322 |
+
|
| 323 |
+
return math_result
|
| 324 |
|
| 325 |
+
# Handle specific factual questions
|
| 326 |
+
else:
|
| 327 |
+
# Use search tools for factual questions
|
| 328 |
+
search_results = serper_search(question)
|
| 329 |
+
|
| 330 |
+
# For some questions, also try Wikipedia
|
| 331 |
+
if any(term in question_lower for term in ["mercedes sosa", "dinosaur", "wikipedia", "olympics"]):
|
| 332 |
+
wiki_results = wikipedia_search(question)
|
| 333 |
+
return f"Search Results: {search_results}\n\nWikipedia: {wiki_results}"
|
| 334 |
+
|
| 335 |
+
return search_results
|
| 336 |
|
| 337 |
except Exception as e:
|
| 338 |
+
print(f"Error in agent processing: {e}")
|
| 339 |
+
# Fallback to basic search
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
try:
|
| 341 |
+
return serper_search(question)
|
| 342 |
+
except:
|
| 343 |
+
return f"I encountered an error processing this question: {question}. Please try rephrasing or breaking it into smaller parts."
|
| 344 |
+
|
| 345 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 346 |
+
"""
|
| 347 |
+
Fetches all questions, runs the GAIA Agent on them, submits all answers,
|
| 348 |
+
and displays the results.
|
| 349 |
+
"""
|
| 350 |
+
space_id = os.getenv("SPACE_ID")
|
| 351 |
+
|
| 352 |
+
if profile:
|
| 353 |
+
username = f"{profile.username}"
|
| 354 |
+
print(f"User logged in: {username}")
|
| 355 |
+
else:
|
| 356 |
+
print("User not logged in.")
|
| 357 |
+
return "Please Login to Hugging Face with the button.", None
|
| 358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
api_url = DEFAULT_API_URL
|
| 360 |
+
questions_url = f"{api_url}/questions"
|
| 361 |
+
submit_url = f"{api_url}/submit"
|
| 362 |
+
|
| 363 |
+
# 1. Instantiate Agent
|
| 364 |
try:
|
| 365 |
+
agent = GAIAAgent()
|
| 366 |
except Exception as e:
|
| 367 |
+
print(f"Error instantiating agent: {e}")
|
| 368 |
+
return f"Error initializing agent: {e}", None
|
| 369 |
+
|
| 370 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 371 |
+
print(agent_code)
|
| 372 |
+
|
| 373 |
+
# 2. Fetch Questions
|
| 374 |
+
print(f"Fetching questions from: {questions_url}")
|
| 375 |
try:
|
| 376 |
+
response = requests.get(questions_url, timeout=15)
|
|
|
|
| 377 |
response.raise_for_status()
|
| 378 |
+
questions_data = response.json()
|
| 379 |
+
if not questions_data:
|
| 380 |
+
print("Fetched questions list is empty.")
|
| 381 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 382 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 383 |
+
except requests.exceptions.RequestException as e:
|
| 384 |
+
print(f"Error fetching questions: {e}")
|
| 385 |
+
return f"Error fetching questions: {e}", None
|
| 386 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 387 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 388 |
+
print(f"Response text: {response.text[:500]}")
|
| 389 |
+
return f"Error decoding server response for questions: {e}", None
|
| 390 |
except Exception as e:
|
| 391 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 392 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 393 |
+
|
| 394 |
+
# 3. Run Agent
|
| 395 |
+
results_log = []
|
| 396 |
+
answers_payload = []
|
| 397 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 398 |
|
| 399 |
+
for i, item in enumerate(questions_data):
|
| 400 |
task_id = item.get("task_id")
|
| 401 |
+
question_text = item.get("question")
|
| 402 |
+
if not task_id or question_text is None:
|
| 403 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 404 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
+
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
| 407 |
+
try:
|
| 408 |
+
submitted_answer = agent(question_text)
|
| 409 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 410 |
+
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "...", "Submitted Answer": submitted_answer[:200] + "..."})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
+
# Add small delay to avoid rate limiting
|
| 413 |
+
time.sleep(1)
|
| 414 |
|
| 415 |
except Exception as e:
|
| 416 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 417 |
+
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "...", "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 418 |
+
|
| 419 |
+
if not answers_payload:
|
| 420 |
+
print("Agent did not produce any answers to submit.")
|
| 421 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 422 |
+
|
| 423 |
+
# 4. Prepare Submission
|
| 424 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 425 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 426 |
+
print(status_update)
|
| 427 |
+
|
| 428 |
+
# 5. Submit
|
| 429 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
try:
|
| 431 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
|
| 432 |
response.raise_for_status()
|
| 433 |
+
result_data = response.json()
|
| 434 |
+
final_status = (
|
| 435 |
+
f"Submission Successful!\n"
|
| 436 |
+
f"User: {result_data.get('username')}\n"
|
| 437 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 438 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 439 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 440 |
+
)
|
| 441 |
+
print("Submission successful.")
|
| 442 |
+
results_df = pd.DataFrame(results_log)
|
| 443 |
+
return final_status, results_df
|
| 444 |
+
except requests.exceptions.HTTPError as e:
|
| 445 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 446 |
+
try:
|
| 447 |
+
error_json = e.response.json()
|
| 448 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 449 |
+
except requests.exceptions.JSONDecodeError:
|
| 450 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 451 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 452 |
+
print(status_message)
|
| 453 |
+
results_df = pd.DataFrame(results_log)
|
| 454 |
+
return status_message, results_df
|
| 455 |
+
except requests.exceptions.Timeout:
|
| 456 |
+
status_message = "Submission Failed: The request timed out."
|
| 457 |
+
print(status_message)
|
| 458 |
+
results_df = pd.DataFrame(results_log)
|
| 459 |
+
return status_message, results_df
|
| 460 |
+
except requests.exceptions.RequestException as e:
|
| 461 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 462 |
+
print(status_message)
|
| 463 |
+
results_df = pd.DataFrame(results_log)
|
| 464 |
+
return status_message, results_df
|
| 465 |
+
except Exception as e:
|
| 466 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 467 |
+
print(status_message)
|
| 468 |
+
results_df = pd.DataFrame(results_log)
|
| 469 |
+
return status_message, results_df
|
| 470 |
+
|
| 471 |
+
# --- Build Gradio Interface ---
|
| 472 |
+
with gr.Blocks() as demo:
|
| 473 |
+
gr.Markdown("# GAIA Benchmark Agent")
|
| 474 |
+
gr.Markdown(
|
| 475 |
+
"""
|
| 476 |
+
**Enhanced Agent for GAIA Benchmark**
|
| 477 |
+
|
| 478 |
+
This agent uses multiple specialized tools to handle diverse question types:
|
| 479 |
+
- Web search (Serper API + DuckDuckGo)
|
| 480 |
+
- Wikipedia search
|
| 481 |
+
- YouTube video analysis
|
| 482 |
+
- Text processing and reversal
|
| 483 |
+
- Mathematical problem solving
|
| 484 |
+
- Data extraction and botanical classification
|
| 485 |
+
|
| 486 |
+
**Instructions:**
|
| 487 |
+
1. Log in to your Hugging Face account
|
| 488 |
+
2. Click 'Run Evaluation & Submit All Answers' to start the benchmark
|
| 489 |
+
3. The agent will process all questions and submit results automatically
|
| 490 |
+
|
| 491 |
+
**Note:** Processing may take several minutes due to the complexity of questions.
|
| 492 |
+
"""
|
| 493 |
+
)
|
| 494 |
|
| 495 |
+
gr.LoginButton()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
|
| 497 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
|
| 499 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 500 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 501 |
+
|
| 502 |
+
run_button.click(
|
| 503 |
+
fn=run_and_submit_all,
|
| 504 |
+
outputs=[status_output, results_table]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
if __name__ == "__main__":
|
| 508 |
+
print("\n" + "-"*30 + " GAIA Agent Starting " + "-"*30)
|
| 509 |
|
| 510 |
# Check environment variables
|
| 511 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 512 |
+
space_id_startup = os.getenv("SPACE_ID")
|
| 513 |
+
serper_key = os.getenv("SERPER_API_KEY")
|
| 514 |
+
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
| 515 |
+
|
| 516 |
+
if space_host_startup:
|
| 517 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 518 |
+
else:
|
| 519 |
+
print("ℹ️ SPACE_HOST not found (running locally?)")
|
| 520 |
+
|
| 521 |
+
if space_id_startup:
|
| 522 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 523 |
+
else:
|
| 524 |
+
print("ℹ️ SPACE_ID not found")
|
| 525 |
+
|
| 526 |
+
if serper_key:
|
| 527 |
+
print("✅ SERPER_API_KEY found")
|
| 528 |
+
else:
|
| 529 |
+
print("❌ SERPER_API_KEY missing - web search will be limited")
|
| 530 |
+
|
| 531 |
+
if hf_token:
|
| 532 |
+
print("✅ HUGGINGFACE_INFERENCE_TOKEN found")
|
| 533 |
+
else:
|
| 534 |
+
print("❌ HUGGINGFACE_INFERENCE_TOKEN missing - model access may fail")
|
| 535 |
+
|
| 536 |
+
print("-"*(60 + len(" GAIA Agent Starting ")) + "\n")
|
| 537 |
+
|
| 538 |
+
print("Launching GAIA Agent Interface...")
|
| 539 |
+
demo.launch(debug=True, share=False)
|
lang.txt
DELETED
|
@@ -1,393 +0,0 @@
|
|
| 1 |
-
Final_Assignment_Template\app.py
|
| 2 |
-
import os
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import requests
|
| 5 |
-
import inspect
|
| 6 |
-
import pandas as pd
|
| 7 |
-
from agent import build_graph
|
| 8 |
-
|
| 9 |
-
# (Keep Constants as is)
|
| 10 |
-
# --- Constants ---
|
| 11 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
-
|
| 13 |
-
# --- Basic Agent Definition ---
|
| 14 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 15 |
-
class BasicAgent:
|
| 16 |
-
def __init__(self):
|
| 17 |
-
print("BasicAgent initialized.")
|
| 18 |
-
self.graph = build_graph()
|
| 19 |
-
|
| 20 |
-
def __call__(self, question: str) -> str:
|
| 21 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 22 |
-
# Wrap the question in a HumanMessage from langchain_core
|
| 23 |
-
messages = [HumanMessage(content=question)]
|
| 24 |
-
messages = self.graph.invoke({"messages": messages})
|
| 25 |
-
answer = messages['messages'][-1].content
|
| 26 |
-
return answer[14:]
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 30 |
-
"""
|
| 31 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 32 |
-
and displays the results.
|
| 33 |
-
"""
|
| 34 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 35 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 36 |
-
|
| 37 |
-
if profile:
|
| 38 |
-
username= f"{profile.username}"
|
| 39 |
-
print(f"User logged in: {username}")
|
| 40 |
-
else:
|
| 41 |
-
print("User not logged in.")
|
| 42 |
-
return "Please Login to Hugging Face with the button.", None
|
| 43 |
-
|
| 44 |
-
api_url = DEFAULT_API_URL
|
| 45 |
-
questions_url = f"{api_url}/questions"
|
| 46 |
-
submit_url = f"{api_url}/submit"
|
| 47 |
-
|
| 48 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 49 |
-
try:
|
| 50 |
-
agent = BasicAgent()
|
| 51 |
-
except Exception as e:
|
| 52 |
-
print(f"Error instantiating agent: {e}")
|
| 53 |
-
return f"Error initializing agent: {e}", None
|
| 54 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 55 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 56 |
-
print(agent_code)
|
| 57 |
-
|
| 58 |
-
# 2. Fetch Questions
|
| 59 |
-
print(f"Fetching questions from: {questions_url}")
|
| 60 |
-
try:
|
| 61 |
-
response = requests.get(questions_url, timeout=15)
|
| 62 |
-
response.raise_for_status()
|
| 63 |
-
questions_data = response.json()
|
| 64 |
-
if not questions_data:
|
| 65 |
-
print("Fetched questions list is empty.")
|
| 66 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 67 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 68 |
-
except requests.exceptions.RequestException as e:
|
| 69 |
-
print(f"Error fetching questions: {e}")
|
| 70 |
-
return f"Error fetching questions: {e}", None
|
| 71 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 72 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 73 |
-
print(f"Response text: {response.text[:500]}")
|
| 74 |
-
return f"Error decoding server response for questions: {e}", None
|
| 75 |
-
except Exception as e:
|
| 76 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
| 77 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 78 |
-
|
| 79 |
-
# 3. Run your Agent
|
| 80 |
-
results_log = []
|
| 81 |
-
answers_payload = []
|
| 82 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 83 |
-
for item in questions_data:
|
| 84 |
-
task_id = item.get("task_id")
|
| 85 |
-
question_text = item.get("question")
|
| 86 |
-
if not task_id or question_text is None:
|
| 87 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 88 |
-
continue
|
| 89 |
-
try:
|
| 90 |
-
submitted_answer = agent(question_text)
|
| 91 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 92 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 93 |
-
except Exception as e:
|
| 94 |
-
print(f"Error running agent on task {task_id}: {e}")
|
| 95 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 96 |
-
|
| 97 |
-
if not answers_payload:
|
| 98 |
-
print("Agent did not produce any answers to submit.")
|
| 99 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 100 |
-
|
| 101 |
-
# 4. Prepare Submission
|
| 102 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 103 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 104 |
-
print(status_update)
|
| 105 |
-
|
| 106 |
-
# 5. Submit
|
| 107 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 108 |
-
try:
|
| 109 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 110 |
-
response.raise_for_status()
|
| 111 |
-
result_data = response.json()
|
| 112 |
-
final_status = (
|
| 113 |
-
f"Submission Successful!\n"
|
| 114 |
-
f"User: {result_data.get('username')}\n"
|
| 115 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 116 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 117 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
| 118 |
-
)
|
| 119 |
-
print("Submission successful.")
|
| 120 |
-
results_df = pd.DataFrame(results_log)
|
| 121 |
-
return final_status, results_df
|
| 122 |
-
except requests.exceptions.HTTPError as e:
|
| 123 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 124 |
-
try:
|
| 125 |
-
error_json = e.response.json()
|
| 126 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 127 |
-
except requests.exceptions.JSONDecodeError:
|
| 128 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 129 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 130 |
-
print(status_message)
|
| 131 |
-
results_df = pd.DataFrame(results_log)
|
| 132 |
-
return status_message, results_df
|
| 133 |
-
except requests.exceptions.Timeout:
|
| 134 |
-
status_message = "Submission Failed: The request timed out."
|
| 135 |
-
print(status_message)
|
| 136 |
-
results_df = pd.DataFrame(results_log)
|
| 137 |
-
return status_message, results_df
|
| 138 |
-
except requests.exceptions.RequestException as e:
|
| 139 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 140 |
-
print(status_message)
|
| 141 |
-
results_df = pd.DataFrame(results_log)
|
| 142 |
-
return status_message, results_df
|
| 143 |
-
except Exception as e:
|
| 144 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
| 145 |
-
print(status_message)
|
| 146 |
-
results_df = pd.DataFrame(results_log)
|
| 147 |
-
return status_message, results_df
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
# --- Build Gradio Interface using Blocks ---
|
| 151 |
-
with gr.Blocks() as demo:
|
| 152 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 153 |
-
gr.Markdown(
|
| 154 |
-
"""
|
| 155 |
-
**Instructions:**
|
| 156 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 157 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 158 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 159 |
-
---
|
| 160 |
-
**Disclaimers:**
|
| 161 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 162 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 163 |
-
"""
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
gr.LoginButton()
|
| 167 |
-
|
| 168 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 169 |
-
|
| 170 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 171 |
-
# Removed max_rows=10 from DataFrame constructor
|
| 172 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 173 |
-
|
| 174 |
-
run_button.click(
|
| 175 |
-
fn=run_and_submit_all,
|
| 176 |
-
outputs=[status_output, results_table]
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
if __name__ == "__main__":
|
| 180 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 181 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 182 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 183 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 184 |
-
|
| 185 |
-
if space_host_startup:
|
| 186 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 187 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 188 |
-
else:
|
| 189 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 190 |
-
|
| 191 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 192 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 193 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 194 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 195 |
-
else:
|
| 196 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 197 |
-
|
| 198 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 199 |
-
|
| 200 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 201 |
-
demo.launch(debug=True, share=False)
|
| 202 |
-
|
| 203 |
-
Final_Assignment_Template\agent.py:
|
| 204 |
-
import os
|
| 205 |
-
import json
|
| 206 |
-
from dotenv import load_dotenv
|
| 207 |
-
from langchain_core.messages import HumanMessage
|
| 208 |
-
|
| 209 |
-
load_dotenv()
|
| 210 |
-
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
| 211 |
-
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
| 212 |
-
|
| 213 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
| 214 |
-
from langgraph.prebuilt import tools_condition, ToolNode
|
| 215 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
| 216 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 217 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 218 |
-
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
| 219 |
-
from langchain_community.vectorstores import Chroma
|
| 220 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
| 221 |
-
from langchain_core.tools import tool
|
| 222 |
-
from langchain.schema import Document
|
| 223 |
-
|
| 224 |
-
# ---- Tool Definitions (with docstrings) ----
|
| 225 |
-
|
| 226 |
-
@tool
|
| 227 |
-
def multiply(a: int, b: int) -> int:
|
| 228 |
-
"""Multiply two integers and return the result."""
|
| 229 |
-
return a * b
|
| 230 |
-
|
| 231 |
-
@tool
|
| 232 |
-
def add(a: int, b: int) -> int:
|
| 233 |
-
"""Add two integers and return the result."""
|
| 234 |
-
return a + b
|
| 235 |
-
|
| 236 |
-
@tool
|
| 237 |
-
def subtract(a: int, b: int) -> int:
|
| 238 |
-
"""Subtract second integer from the first and return the result."""
|
| 239 |
-
return a - b
|
| 240 |
-
|
| 241 |
-
@tool
|
| 242 |
-
def divide(a: int, b: int) -> float:
|
| 243 |
-
"""Divide first integer by second and return the result as a float."""
|
| 244 |
-
if b == 0:
|
| 245 |
-
raise ValueError("Cannot divide by zero.")
|
| 246 |
-
return a / b
|
| 247 |
-
|
| 248 |
-
@tool
|
| 249 |
-
def modulus(a: int, b: int) -> int:
|
| 250 |
-
"""Return the remainder when first integer is divided by second."""
|
| 251 |
-
return a % b
|
| 252 |
-
|
| 253 |
-
@tool
|
| 254 |
-
def wiki_search(query: str) -> str:
|
| 255 |
-
"""Search Wikipedia for the query and return text of up to 2 documents."""
|
| 256 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 257 |
-
formatted = "\n\n---\n\n".join(
|
| 258 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 259 |
-
for doc in search_docs
|
| 260 |
-
)
|
| 261 |
-
return {"wiki_results": formatted}
|
| 262 |
-
|
| 263 |
-
@tool
|
| 264 |
-
def web_search(query: str) -> str:
|
| 265 |
-
"""Search the web for the query using Tavily and return up to 3 results."""
|
| 266 |
-
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 267 |
-
formatted = "\n\n---\n\n".join(
|
| 268 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 269 |
-
for doc in search_docs
|
| 270 |
-
)
|
| 271 |
-
return {"web_results": formatted}
|
| 272 |
-
|
| 273 |
-
@tool
|
| 274 |
-
def arvix_search(query: str) -> str:
|
| 275 |
-
"""Search Arxiv for the query and return content from up to 3 papers."""
|
| 276 |
-
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 277 |
-
formatted = "\n\n---\n\n".join(
|
| 278 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 279 |
-
for doc in search_docs
|
| 280 |
-
)
|
| 281 |
-
return {"arvix_results": formatted}
|
| 282 |
-
|
| 283 |
-
# Build vector store once
|
| 284 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 285 |
-
json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")]
|
| 286 |
-
documents = [
|
| 287 |
-
Document(
|
| 288 |
-
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
|
| 289 |
-
metadata={"source": sample["task_id"]}
|
| 290 |
-
) for sample in json_QA
|
| 291 |
-
]
|
| 292 |
-
vector_store = Chroma.from_documents(
|
| 293 |
-
documents=documents,
|
| 294 |
-
embedding=embeddings,
|
| 295 |
-
persist_directory="./chroma_db",
|
| 296 |
-
collection_name="my_collection"
|
| 297 |
-
)
|
| 298 |
-
print("Documents inserted:", vector_store._collection.count())
|
| 299 |
-
|
| 300 |
-
@tool
|
| 301 |
-
def similar_question_search(query: str) -> str:
|
| 302 |
-
"""Search for questions similar to the input query using the vector store."""
|
| 303 |
-
matched_docs = vector_store.similarity_search(query, 3)
|
| 304 |
-
formatted = "\n\n---\n\n".join(
|
| 305 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 306 |
-
for doc in matched_docs
|
| 307 |
-
)
|
| 308 |
-
return {"similar_questions": formatted}
|
| 309 |
-
|
| 310 |
-
# ---- System Prompt ----
|
| 311 |
-
|
| 312 |
-
system_prompt = """
|
| 313 |
-
You are a helpful assistant tasked with answering questions using a set of tools.
|
| 314 |
-
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 315 |
-
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 316 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
|
| 317 |
-
"""
|
| 318 |
-
sys_msg = SystemMessage(content=system_prompt)
|
| 319 |
-
|
| 320 |
-
tools = [
|
| 321 |
-
multiply, add, subtract, divide, modulus,
|
| 322 |
-
wiki_search, web_search, arvix_search, similar_question_search
|
| 323 |
-
]
|
| 324 |
-
|
| 325 |
-
# ---- Graph Builder ----
|
| 326 |
-
|
| 327 |
-
def build_graph(provider: str = "huggingface"):
|
| 328 |
-
if provider == "huggingface":
|
| 329 |
-
llm = ChatHuggingFace(
|
| 330 |
-
llm=HuggingFaceEndpoint(
|
| 331 |
-
repo_id="mosaicml/mpt-30b",
|
| 332 |
-
temperature=0,
|
| 333 |
-
huggingfacehub_api_token=hf_token
|
| 334 |
-
)
|
| 335 |
-
)
|
| 336 |
-
elif provider == "google":
|
| 337 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
| 338 |
-
else:
|
| 339 |
-
raise ValueError("Invalid provider: choose 'huggingface' or 'google'.")
|
| 340 |
-
|
| 341 |
-
llm_with_tools = llm.bind_tools(tools)
|
| 342 |
-
|
| 343 |
-
def assistant(state: MessagesState):
|
| 344 |
-
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 345 |
-
|
| 346 |
-
def retriever(state: MessagesState):
|
| 347 |
-
similar = vector_store.similarity_search(state["messages"][0].content)
|
| 348 |
-
if similar:
|
| 349 |
-
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
|
| 350 |
-
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 351 |
-
return {"messages": [sys_msg] + state["messages"]}
|
| 352 |
-
|
| 353 |
-
builder = StateGraph(MessagesState)
|
| 354 |
-
builder.add_node("retriever", retriever)
|
| 355 |
-
builder.add_node("assistant", assistant)
|
| 356 |
-
builder.add_node("tools", ToolNode(tools))
|
| 357 |
-
builder.add_edge(START, "retriever")
|
| 358 |
-
builder.add_edge("retriever", "assistant")
|
| 359 |
-
builder.add_conditional_edges("assistant", tools_condition)
|
| 360 |
-
builder.add_edge("tools", "assistant")
|
| 361 |
-
|
| 362 |
-
return builder.compile()
|
| 363 |
-
|
| 364 |
-
Final_Assignment_Template\metadata.jsonl:
|
| 365 |
-
|
| 366 |
-
Final_Assignment_Template\requirements.txt:
|
| 367 |
-
gradio
|
| 368 |
-
requests
|
| 369 |
-
langchain
|
| 370 |
-
langchain-community
|
| 371 |
-
langchain-core
|
| 372 |
-
langchain-google-genai
|
| 373 |
-
langchain-huggingface
|
| 374 |
-
langchain-groq
|
| 375 |
-
langchain-tavily
|
| 376 |
-
langchain-chroma
|
| 377 |
-
langgraph
|
| 378 |
-
sentence-transformers
|
| 379 |
-
huggingface_hub
|
| 380 |
-
supabase
|
| 381 |
-
arxiv
|
| 382 |
-
pymupdf
|
| 383 |
-
wikipedia
|
| 384 |
-
pgvector
|
| 385 |
-
python-dotenv
|
| 386 |
-
protobuf==3.20.3
|
| 387 |
-
|
| 388 |
-
Final_Assignment_Template\system_prompt.txt:
|
| 389 |
-
You are a helpful assistant tasked with answering questions using a set of tools.
|
| 390 |
-
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 391 |
-
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 392 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 393 |
-
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|