Spaces:
Runtime error
Runtime error
Fix
Browse files- agent.py +97 -399
- app.py +44 -175
- requirements.txt +4 -13
agent.py
CHANGED
@@ -1,474 +1,172 @@
|
|
1 |
import os
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
|
4 |
-
#
|
5 |
load_dotenv()
|
6 |
-
|
7 |
-
# Set protobuf implementation to avoid C++ extension issues
|
8 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
9 |
|
10 |
-
# Load keys from environment
|
11 |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
12 |
-
serper_api_key = os.getenv("SERPER_API_KEY")
|
13 |
|
14 |
# ---- Imports ----
|
15 |
from langgraph.graph import START, StateGraph, MessagesState
|
16 |
from langgraph.prebuilt import tools_condition, ToolNode
|
17 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
18 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
19 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
20 |
-
|
21 |
-
|
22 |
-
except ImportError:
|
23 |
-
from langchain.vectorstores import Chroma
|
24 |
-
from langchain_core.documents import Document
|
25 |
-
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
26 |
from langchain_core.tools import tool
|
27 |
-
from
|
28 |
-
from langchain.tools.retriever import create_retriever_tool
|
29 |
-
try:
|
30 |
-
from langchain.embeddings import HuggingFaceEmbeddings as LegacyHFEmbeddings
|
31 |
-
except ImportError:
|
32 |
-
LegacyHFEmbeddings = HuggingFaceEmbeddings
|
33 |
-
from langchain.schema import Document as LegacyDocument
|
34 |
-
import json
|
35 |
-
import requests
|
36 |
-
from typing import List, Dict, Any
|
37 |
-
import re
|
38 |
-
import math
|
39 |
-
from datetime import datetime
|
40 |
|
41 |
-
#
|
42 |
-
class SimpleHuggingFaceLLM(BaseLanguageModel):
|
43 |
-
def __init__(self, repo_id: str, hf_token: str):
|
44 |
-
super().__init__()
|
45 |
-
self.repo_id = repo_id
|
46 |
-
self.hf_token = hf_token
|
47 |
-
self.api_url = f"https://api-inference.huggingface.co/models/{repo_id}"
|
48 |
-
self.headers = {"Authorization": f"Bearer {hf_token}"}
|
49 |
-
|
50 |
-
# Test the connection
|
51 |
-
self._test_connection()
|
52 |
-
|
53 |
-
def _test_connection(self):
|
54 |
-
"""Test if the model is accessible"""
|
55 |
-
payload = {
|
56 |
-
"inputs": "Hello",
|
57 |
-
"parameters": {
|
58 |
-
"max_new_tokens": 10,
|
59 |
-
"temperature": 0.1,
|
60 |
-
"return_full_text": False
|
61 |
-
}
|
62 |
-
}
|
63 |
-
|
64 |
-
try:
|
65 |
-
response = requests.post(self.api_url, headers=self.headers, json=payload, timeout=30)
|
66 |
-
if response.status_code != 200:
|
67 |
-
print(f"Model {self.repo_id} test failed with status {response.status_code}: {response.text}")
|
68 |
-
raise Exception(f"Model not accessible: {response.status_code}")
|
69 |
-
print(f"Model {self.repo_id} test successful")
|
70 |
-
except Exception as e:
|
71 |
-
print(f"Model {self.repo_id} connection test failed: {e}")
|
72 |
-
raise e
|
73 |
-
|
74 |
-
def _generate(self, messages, stop=None, run_manager=None, **kwargs):
|
75 |
-
# Convert messages to a single prompt
|
76 |
-
if isinstance(messages, list):
|
77 |
-
prompt = messages[-1].content if messages else ""
|
78 |
-
else:
|
79 |
-
prompt = str(messages)
|
80 |
-
|
81 |
-
payload = {
|
82 |
-
"inputs": prompt,
|
83 |
-
"parameters": {
|
84 |
-
"max_new_tokens": 512,
|
85 |
-
"temperature": 0.1,
|
86 |
-
"return_full_text": False,
|
87 |
-
"do_sample": False
|
88 |
-
}
|
89 |
-
}
|
90 |
-
|
91 |
-
try:
|
92 |
-
response = requests.post(self.api_url, headers=self.headers, json=payload, timeout=60)
|
93 |
-
if response.status_code == 200:
|
94 |
-
result = response.json()
|
95 |
-
if isinstance(result, list) and len(result) > 0:
|
96 |
-
generated_text = result[0].get('generated_text', '')
|
97 |
-
elif isinstance(result, dict):
|
98 |
-
generated_text = result.get('generated_text', str(result))
|
99 |
-
else:
|
100 |
-
generated_text = str(result)
|
101 |
-
|
102 |
-
from langchain_core.outputs import LLMResult, Generation
|
103 |
-
return LLMResult(generations=[[Generation(text=generated_text)]])
|
104 |
-
else:
|
105 |
-
error_msg = f"API Error {response.status_code}: {response.text[:200]}"
|
106 |
-
print(error_msg)
|
107 |
-
from langchain_core.outputs import LLMResult, Generation
|
108 |
-
return LLMResult(generations=[[Generation(text=f"Error: {error_msg}")]])
|
109 |
-
except Exception as e:
|
110 |
-
error_msg = f"Request failed: {str(e)}"
|
111 |
-
print(error_msg)
|
112 |
-
from langchain_core.outputs import LLMResult, Generation
|
113 |
-
return LLMResult(generations=[[Generation(text=error_msg)]])
|
114 |
-
|
115 |
-
def invoke(self, input, config=None, **kwargs):
|
116 |
-
if isinstance(input, list):
|
117 |
-
prompt = input[-1].content if input else ""
|
118 |
-
else:
|
119 |
-
prompt = str(input)
|
120 |
-
|
121 |
-
result = self._generate(prompt)
|
122 |
-
generated_text = result.generations[0][0].text
|
123 |
-
return AIMessage(content=generated_text)
|
124 |
-
|
125 |
-
@property
|
126 |
-
def _llm_type(self):
|
127 |
-
return "huggingface_custom"
|
128 |
-
|
129 |
-
def _call(self, prompt: str, stop=None, run_manager=None, **kwargs):
|
130 |
-
"""Legacy method for compatibility"""
|
131 |
-
result = self._generate(prompt)
|
132 |
-
return result.generations[0][0].text
|
133 |
-
|
134 |
-
# ---- Enhanced Tools ----
|
135 |
|
136 |
@tool
|
137 |
-
def multiply(a:
|
138 |
-
"""Multiply two numbers"""
|
139 |
return a * b
|
140 |
|
141 |
@tool
|
142 |
-
def add(a:
|
143 |
-
"""Add two numbers"""
|
144 |
return a + b
|
145 |
|
146 |
@tool
|
147 |
-
def subtract(a:
|
148 |
-
"""Subtract two numbers"""
|
149 |
return a - b
|
150 |
|
151 |
@tool
|
152 |
-
def divide(a:
|
153 |
-
"""Divide two numbers"""
|
154 |
if b == 0:
|
155 |
raise ValueError("Cannot divide by zero.")
|
156 |
return a / b
|
157 |
|
158 |
@tool
|
159 |
def modulus(a: int, b: int) -> int:
|
160 |
-
"""Calculate modulus of two integers"""
|
161 |
return a % b
|
162 |
|
163 |
-
@tool
|
164 |
-
def power(a: float, b: float) -> float:
|
165 |
-
"""Calculate a raised to the power of b"""
|
166 |
-
return a ** b
|
167 |
-
|
168 |
-
@tool
|
169 |
-
def square_root(a: float) -> float:
|
170 |
-
"""Calculate square root of a number"""
|
171 |
-
return math.sqrt(a)
|
172 |
-
|
173 |
-
@tool
|
174 |
-
def factorial(n: int) -> int:
|
175 |
-
"""Calculate factorial of a number"""
|
176 |
-
if n < 0:
|
177 |
-
raise ValueError("Factorial is not defined for negative numbers")
|
178 |
-
if n == 0 or n == 1:
|
179 |
-
return 1
|
180 |
-
result = 1
|
181 |
-
for i in range(2, n + 1):
|
182 |
-
result *= i
|
183 |
-
return result
|
184 |
-
|
185 |
-
@tool
|
186 |
-
def gcd(a: int, b: int) -> int:
|
187 |
-
"""Calculate greatest common divisor"""
|
188 |
-
while b:
|
189 |
-
a, b = b, a % b
|
190 |
-
return a
|
191 |
-
|
192 |
-
@tool
|
193 |
-
def lcm(a: int, b: int) -> int:
|
194 |
-
"""Calculate least common multiple"""
|
195 |
-
return abs(a * b) // gcd(a, b)
|
196 |
-
|
197 |
-
@tool
|
198 |
-
def percentage(part: float, whole: float) -> float:
|
199 |
-
"""Calculate percentage"""
|
200 |
-
return (part / whole) * 100
|
201 |
-
|
202 |
-
@tool
|
203 |
-
def compound_interest(principal: float, rate: float, time: float, n: int = 1) -> float:
|
204 |
-
"""Calculate compound interest"""
|
205 |
-
return principal * (1 + rate/n) ** (n * time)
|
206 |
-
|
207 |
-
@tool
|
208 |
-
def calculate_average(numbers: str) -> float:
|
209 |
-
"""Calculate average of comma-separated numbers"""
|
210 |
-
try:
|
211 |
-
nums = [float(x.strip()) for x in numbers.split(',')]
|
212 |
-
return sum(nums) / len(nums)
|
213 |
-
except:
|
214 |
-
return 0.0
|
215 |
-
|
216 |
@tool
|
217 |
def wiki_search(query: str) -> str:
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
return "No Wikipedia results found."
|
223 |
-
|
224 |
-
formatted = "\n\n---\n\n".join([
|
225 |
-
f'Wikipedia: {doc.metadata.get("title", "Unknown")}\n{doc.page_content[:1500]}'
|
226 |
for doc in search_docs
|
227 |
-
]
|
228 |
-
|
229 |
-
|
230 |
-
return f"Wikipedia search error: {str(e)}"
|
231 |
|
232 |
@tool
|
233 |
def web_search(query: str) -> str:
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
return "No web search results found."
|
239 |
-
|
240 |
-
formatted = "\n\n---\n\n".join([
|
241 |
-
f'Web: {doc.get("title", "Unknown")}\n{doc.get("content", "")[:1500]}'
|
242 |
for doc in search_docs
|
243 |
-
]
|
244 |
-
|
245 |
-
|
246 |
-
return f"Web search error: {str(e)}"
|
247 |
|
248 |
@tool
|
249 |
-
def
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
return "Invalid characters in expression"
|
256 |
-
|
257 |
-
# Evaluate the expression
|
258 |
-
result = eval(expression)
|
259 |
-
return str(result)
|
260 |
-
except Exception as e:
|
261 |
-
return f"Calculation error: {str(e)}"
|
262 |
-
|
263 |
-
# ---- Embedding & Vector Store Setup with better error handling ----
|
264 |
-
def setup_vector_store():
|
265 |
-
try:
|
266 |
-
# Try different embedding models
|
267 |
-
embedding_models = [
|
268 |
-
"sentence-transformers/all-MiniLM-L6-v2",
|
269 |
-
"sentence-transformers/all-mpnet-base-v2"
|
270 |
]
|
271 |
-
|
272 |
-
|
273 |
-
for model_name in embedding_models:
|
274 |
-
try:
|
275 |
-
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
276 |
-
print(f"Successfully loaded embeddings: {model_name}")
|
277 |
-
break
|
278 |
-
except Exception as e:
|
279 |
-
print(f"Failed to load embeddings {model_name}: {e}")
|
280 |
-
continue
|
281 |
-
|
282 |
-
if embeddings is None:
|
283 |
-
print("Could not load any embedding model, skipping vector store setup")
|
284 |
-
return None
|
285 |
-
|
286 |
-
# Check if metadata.jsonl exists and load it
|
287 |
-
if os.path.exists('metadata.jsonl'):
|
288 |
-
json_QA = []
|
289 |
-
with open('metadata.jsonl', 'r') as jsonl_file:
|
290 |
-
for line in jsonl_file:
|
291 |
-
if line.strip():
|
292 |
-
try:
|
293 |
-
json_QA.append(json.loads(line))
|
294 |
-
except:
|
295 |
-
continue
|
296 |
-
|
297 |
-
if json_QA:
|
298 |
-
documents = []
|
299 |
-
for sample in json_QA:
|
300 |
-
if sample.get('Question') and sample.get('Final answer'):
|
301 |
-
doc = Document(
|
302 |
-
page_content=f"Question: {sample['Question']}\n\nAnswer: {sample['Final answer']}",
|
303 |
-
metadata={"source": sample.get("task_id", "unknown")}
|
304 |
-
)
|
305 |
-
documents.append(doc)
|
306 |
-
|
307 |
-
if documents:
|
308 |
-
try:
|
309 |
-
vector_store = Chroma.from_documents(
|
310 |
-
documents=documents,
|
311 |
-
embedding=embeddings,
|
312 |
-
persist_directory="./chroma_db",
|
313 |
-
collection_name="my_collection"
|
314 |
-
)
|
315 |
-
vector_store.persist()
|
316 |
-
print(f"Vector store created with {len(documents)} documents")
|
317 |
-
return vector_store
|
318 |
-
except Exception as e:
|
319 |
-
print(f"Error creating vector store with documents: {e}")
|
320 |
-
|
321 |
-
# Create empty vector store if no data
|
322 |
-
try:
|
323 |
-
vector_store = Chroma(
|
324 |
-
embedding_function=embeddings,
|
325 |
-
persist_directory="./chroma_db",
|
326 |
-
collection_name="my_collection"
|
327 |
-
)
|
328 |
-
print("Empty vector store created")
|
329 |
-
return vector_store
|
330 |
-
except Exception as e:
|
331 |
-
print(f"Error creating empty vector store: {e}")
|
332 |
-
return None
|
333 |
-
|
334 |
-
except Exception as e:
|
335 |
-
print(f"Vector store setup error: {e}")
|
336 |
-
return None
|
337 |
|
338 |
-
#
|
339 |
-
vector_store = setup_vector_store()
|
340 |
|
341 |
-
|
342 |
-
def similar_question_search(query: str) -> str:
|
343 |
-
"""Search for similar questions in the knowledge base"""
|
344 |
-
if not vector_store:
|
345 |
-
return "No similar questions available"
|
346 |
-
|
347 |
-
try:
|
348 |
-
matched_docs = vector_store.similarity_search(query, k=2)
|
349 |
-
if not matched_docs:
|
350 |
-
return "No similar questions found"
|
351 |
-
|
352 |
-
formatted = "\n\n".join([
|
353 |
-
f'Similar Q&A:\n{doc.page_content[:800]}'
|
354 |
-
for doc in matched_docs
|
355 |
-
])
|
356 |
-
return formatted
|
357 |
-
except Exception as e:
|
358 |
-
return f"Similar question search error: {str(e)}"
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
367 |
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
374 |
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
-
|
379 |
-
- Numbers: Use plain digits (no commas, units, or symbols unless requested)
|
380 |
-
- Text: Use exact names without articles
|
381 |
-
- Lists: Comma-separated values
|
382 |
|
383 |
-
|
|
|
|
|
|
|
|
|
384 |
"""
|
385 |
|
386 |
sys_msg = SystemMessage(content=system_prompt)
|
387 |
|
388 |
# ---- Tool List ----
|
|
|
389 |
tools = [
|
390 |
-
|
391 |
-
|
392 |
-
factorial, gcd, lcm, percentage, compound_interest, calculate_average, simple_calculation,
|
393 |
-
# Search tools
|
394 |
-
wiki_search, web_search, similar_question_search
|
395 |
]
|
396 |
|
397 |
-
# ---- Graph
|
|
|
398 |
def build_graph(provider: str = "huggingface"):
|
399 |
-
"""Build the agent graph with custom HuggingFace integration"""
|
400 |
-
|
401 |
if provider == "huggingface":
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
]
|
412 |
-
|
413 |
-
llm = None
|
414 |
-
for model_id in models_to_try:
|
415 |
-
try:
|
416 |
-
print(f"Trying to initialize model: {model_id}")
|
417 |
-
llm = SimpleHuggingFaceLLM(repo_id=model_id, hf_token=hf_token)
|
418 |
-
print(f"Successfully initialized model: {model_id}")
|
419 |
-
break
|
420 |
-
except Exception as e:
|
421 |
-
print(f"Failed to initialize {model_id}: {e}")
|
422 |
-
continue
|
423 |
-
|
424 |
-
if llm is None:
|
425 |
-
raise ValueError("Failed to initialize any HuggingFace model. Please check your HUGGINGFACE_INFERENCE_TOKEN and internet connection.")
|
426 |
else:
|
427 |
-
raise ValueError("
|
428 |
|
429 |
-
|
430 |
-
def llm_with_tools(messages):
|
431 |
-
return llm.invoke(messages)
|
432 |
|
433 |
def assistant(state: MessagesState):
|
434 |
-
""
|
435 |
-
try:
|
436 |
-
messages = state["messages"]
|
437 |
-
response = llm_with_tools(messages)
|
438 |
-
return {"messages": [response]}
|
439 |
-
except Exception as e:
|
440 |
-
print(f"Assistant error: {e}")
|
441 |
-
fallback_response = AIMessage(content="I encountered an error processing your request. Let me try a simpler approach.")
|
442 |
-
return {"messages": [fallback_response]}
|
443 |
|
444 |
def retriever(state: MessagesState):
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
# Add similar question context if available
|
452 |
-
if vector_store:
|
453 |
-
try:
|
454 |
-
similar = vector_store.similarity_search(user_query, k=1)
|
455 |
-
if similar:
|
456 |
-
context_msg = HumanMessage(
|
457 |
-
content=f"Here's a similar example:\n{similar[0].page_content[:500]}"
|
458 |
-
)
|
459 |
-
context_messages.append(context_msg)
|
460 |
-
except Exception as e:
|
461 |
-
print(f"Retriever error: {e}")
|
462 |
-
|
463 |
-
return {"messages": context_messages + messages}
|
464 |
|
465 |
-
# Build simplified graph
|
466 |
builder = StateGraph(MessagesState)
|
467 |
builder.add_node("retriever", retriever)
|
468 |
builder.add_node("assistant", assistant)
|
469 |
-
|
470 |
-
# Simple linear flow
|
471 |
builder.add_edge(START, "retriever")
|
472 |
builder.add_edge("retriever", "assistant")
|
|
|
|
|
473 |
|
474 |
-
return builder.compile()
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
from dotenv import load_dotenv
|
4 |
|
5 |
+
# ---- Environment & Setup ----
|
6 |
load_dotenv()
|
|
|
|
|
7 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
8 |
|
|
|
9 |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
|
|
10 |
|
11 |
# ---- Imports ----
|
12 |
from langgraph.graph import START, StateGraph, MessagesState
|
13 |
from langgraph.prebuilt import tools_condition, ToolNode
|
14 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
15 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
16 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
17 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
18 |
+
from langchain_community.vectorstores import Chroma
|
19 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
|
|
|
|
|
|
|
|
20 |
from langchain_core.tools import tool
|
21 |
+
from langchain.schema import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# ---- Tools ----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
@tool
|
26 |
+
def multiply(a: int, b: int) -> int:
|
|
|
27 |
return a * b
|
28 |
|
29 |
@tool
|
30 |
+
def add(a: int, b: int) -> int:
|
|
|
31 |
return a + b
|
32 |
|
33 |
@tool
|
34 |
+
def subtract(a: int, b: int) -> int:
|
|
|
35 |
return a - b
|
36 |
|
37 |
@tool
|
38 |
+
def divide(a: int, b: int) -> float:
|
|
|
39 |
if b == 0:
|
40 |
raise ValueError("Cannot divide by zero.")
|
41 |
return a / b
|
42 |
|
43 |
@tool
|
44 |
def modulus(a: int, b: int) -> int:
|
|
|
45 |
return a % b
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
@tool
|
48 |
def wiki_search(query: str) -> str:
|
49 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
50 |
+
formatted = "\n\n---\n\n".join(
|
51 |
+
[
|
52 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
|
|
|
|
|
|
|
53 |
for doc in search_docs
|
54 |
+
]
|
55 |
+
)
|
56 |
+
return {"wiki_results": formatted}
|
|
|
57 |
|
58 |
@tool
|
59 |
def web_search(query: str) -> str:
|
60 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
61 |
+
formatted = "\n\n---\n\n".join(
|
62 |
+
[
|
63 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
|
|
|
|
|
|
|
64 |
for doc in search_docs
|
65 |
+
]
|
66 |
+
)
|
67 |
+
return {"web_results": formatted}
|
|
|
68 |
|
69 |
@tool
|
70 |
+
def arvix_search(query: str) -> str:
|
71 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
72 |
+
formatted = "\n\n---\n\n".join(
|
73 |
+
[
|
74 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
75 |
+
for doc in search_docs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
]
|
77 |
+
)
|
78 |
+
return {"arvix_results": formatted}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# ---- Embedding & Vector Store ----
|
|
|
81 |
|
82 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
json_QA = []
|
85 |
+
with open('metadata.jsonl', 'r') as jsonl_file:
|
86 |
+
for line in jsonl_file:
|
87 |
+
json_QA.append(json.loads(line))
|
88 |
|
89 |
+
documents = [
|
90 |
+
Document(
|
91 |
+
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
|
92 |
+
metadata={"source": sample["task_id"]}
|
93 |
+
)
|
94 |
+
for sample in json_QA
|
95 |
+
]
|
96 |
|
97 |
+
vector_store = Chroma.from_documents(
|
98 |
+
documents=documents,
|
99 |
+
embedding=embeddings,
|
100 |
+
persist_directory="./chroma_db",
|
101 |
+
collection_name="my_collection"
|
102 |
+
)
|
103 |
+
vector_store.persist()
|
104 |
+
print("Documents inserted:", vector_store._collection.count())
|
105 |
|
106 |
+
@tool
|
107 |
+
def similar_question_search(query: str) -> str:
|
108 |
+
matched_docs = vector_store.similarity_search(query, 3)
|
109 |
+
formatted = "\n\n---\n\n".join(
|
110 |
+
[
|
111 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
112 |
+
for doc in matched_docs
|
113 |
+
]
|
114 |
+
)
|
115 |
+
return {"similar_questions": formatted}
|
116 |
|
117 |
+
# ---- System Prompt ----
|
|
|
|
|
|
|
118 |
|
119 |
+
system_prompt = """
|
120 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
121 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
122 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
123 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
|
124 |
"""
|
125 |
|
126 |
sys_msg = SystemMessage(content=system_prompt)
|
127 |
|
128 |
# ---- Tool List ----
|
129 |
+
|
130 |
tools = [
|
131 |
+
multiply, add, subtract, divide, modulus,
|
132 |
+
wiki_search, web_search, arvix_search, similar_question_search
|
|
|
|
|
|
|
133 |
]
|
134 |
|
135 |
+
# ---- Graph Construction ----
|
136 |
+
|
137 |
def build_graph(provider: str = "huggingface"):
|
|
|
|
|
138 |
if provider == "huggingface":
|
139 |
+
llm = ChatHuggingFace(
|
140 |
+
llm=HuggingFaceEndpoint(
|
141 |
+
repo_id="mosaicml/mpt-30b",
|
142 |
+
temperature=0,
|
143 |
+
huggingfacehub_api_token=hf_token
|
144 |
+
)
|
145 |
+
)
|
146 |
+
elif provider == "google":
|
147 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
else:
|
149 |
+
raise ValueError("Invalid provider: choose 'huggingface' or 'google'.")
|
150 |
|
151 |
+
llm_with_tools = llm.bind_tools(tools)
|
|
|
|
|
152 |
|
153 |
def assistant(state: MessagesState):
|
154 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
def retriever(state: MessagesState):
|
157 |
+
similar = vector_store.similarity_search(state["messages"][0].content)
|
158 |
+
if similar:
|
159 |
+
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
|
160 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
161 |
+
return {"messages": [sys_msg] + state["messages"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
|
|
163 |
builder = StateGraph(MessagesState)
|
164 |
builder.add_node("retriever", retriever)
|
165 |
builder.add_node("assistant", assistant)
|
166 |
+
builder.add_node("tools", ToolNode(tools))
|
|
|
167 |
builder.add_edge(START, "retriever")
|
168 |
builder.add_edge("retriever", "assistant")
|
169 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
170 |
+
builder.add_edge("tools", "assistant")
|
171 |
|
172 |
+
return builder.compile()
|
app.py
CHANGED
@@ -1,97 +1,31 @@
|
|
1 |
-
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
from agent import build_graph
|
8 |
-
from langchain_core.messages import HumanMessage
|
9 |
-
import time
|
10 |
|
|
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
|
14 |
-
# ---
|
|
|
15 |
class BasicAgent:
|
16 |
def __init__(self):
|
17 |
-
print("
|
18 |
-
|
19 |
-
# Add more verbose logging
|
20 |
-
print("Building graph...")
|
21 |
-
self.graph = build_graph()
|
22 |
-
print("Graph built successfully.")
|
23 |
-
except Exception as e:
|
24 |
-
print(f"Error building graph: {e}")
|
25 |
-
print(f"Error type: {type(e).__name__}")
|
26 |
-
import traceback
|
27 |
-
traceback.print_exc()
|
28 |
-
raise e
|
29 |
|
30 |
def __call__(self, question: str) -> str:
|
31 |
-
print(f"Agent received question (first
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return "Empty question received"
|
38 |
-
|
39 |
-
# Wrap the question in a HumanMessage
|
40 |
-
messages = [HumanMessage(content=question)]
|
41 |
-
|
42 |
-
# Invoke the graph with retry mechanism
|
43 |
-
max_retries = 3
|
44 |
-
for attempt in range(max_retries):
|
45 |
-
try:
|
46 |
-
print(f"Attempt {attempt + 1} to process question...")
|
47 |
-
result = self.graph.invoke({"messages": messages})
|
48 |
-
|
49 |
-
if 'messages' in result and result['messages']:
|
50 |
-
answer = result['messages'][-1].content
|
51 |
-
|
52 |
-
# Clean up the answer
|
53 |
-
if isinstance(answer, str):
|
54 |
-
# Remove the "FINAL ANSWER: " prefix if it exists
|
55 |
-
if "FINAL ANSWER:" in answer:
|
56 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
57 |
-
|
58 |
-
# Additional cleanup
|
59 |
-
answer = answer.replace("Assistant: ", "").strip()
|
60 |
-
|
61 |
-
# Handle empty or error responses
|
62 |
-
if not answer or "Error:" in answer or "error" in answer.lower():
|
63 |
-
if attempt < max_retries - 1:
|
64 |
-
print(f"Got error response, retrying: {answer[:100]}")
|
65 |
-
time.sleep(2)
|
66 |
-
continue
|
67 |
-
else:
|
68 |
-
return "Unable to generate answer"
|
69 |
-
|
70 |
-
print(f"Agent answer (first 100 chars): {answer[:100]}...")
|
71 |
-
return answer
|
72 |
-
else:
|
73 |
-
return str(answer)
|
74 |
-
else:
|
75 |
-
print("No messages in result")
|
76 |
-
if attempt < max_retries - 1:
|
77 |
-
time.sleep(2)
|
78 |
-
continue
|
79 |
-
return "No response generated"
|
80 |
-
|
81 |
-
except Exception as e:
|
82 |
-
print(f"Attempt {attempt + 1} failed: {e}")
|
83 |
-
if attempt == max_retries - 1:
|
84 |
-
return f"Error processing question: {str(e)}"
|
85 |
-
time.sleep(2) # Brief pause before retry
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Error in agent call: {e}")
|
89 |
-
import traceback
|
90 |
-
traceback.print_exc()
|
91 |
-
return f"Agent error: {str(e)}"
|
92 |
|
93 |
|
94 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
95 |
"""
|
96 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
97 |
and displays the results.
|
@@ -100,7 +34,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
100 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
101 |
|
102 |
if profile:
|
103 |
-
username
|
104 |
print(f"User logged in: {username}")
|
105 |
else:
|
106 |
print("User not logged in.")
|
@@ -110,25 +44,20 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
110 |
questions_url = f"{api_url}/questions"
|
111 |
submit_url = f"{api_url}/submit"
|
112 |
|
113 |
-
# 1. Instantiate Agent (modify this part to create your agent)
|
114 |
try:
|
115 |
-
print("Initializing agent...")
|
116 |
agent = BasicAgent()
|
117 |
-
print("Agent initialized successfully.")
|
118 |
except Exception as e:
|
119 |
print(f"Error instantiating agent: {e}")
|
120 |
-
import traceback
|
121 |
-
traceback.print_exc()
|
122 |
return f"Error initializing agent: {e}", None
|
123 |
-
|
124 |
-
# In the case of an app running as a Hugging Face space, this link points toward your codebase
|
125 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
126 |
-
print(
|
127 |
|
128 |
# 2. Fetch Questions
|
129 |
print(f"Fetching questions from: {questions_url}")
|
130 |
try:
|
131 |
-
response = requests.get(questions_url, timeout=
|
132 |
response.raise_for_status()
|
133 |
questions_data = response.json()
|
134 |
if not questions_data:
|
@@ -146,95 +75,49 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
146 |
print(f"An unexpected error occurred fetching questions: {e}")
|
147 |
return f"An unexpected error occurred fetching questions: {e}", None
|
148 |
|
149 |
-
# 3. Run your Agent
|
150 |
results_log = []
|
151 |
answers_payload = []
|
152 |
print(f"Running agent on {len(questions_data)} questions...")
|
153 |
-
|
154 |
-
for i, item in enumerate(questions_data):
|
155 |
task_id = item.get("task_id")
|
156 |
question_text = item.get("question")
|
157 |
-
|
158 |
if not task_id or question_text is None:
|
159 |
print(f"Skipping item with missing task_id or question: {item}")
|
160 |
continue
|
161 |
-
|
162 |
-
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
163 |
-
|
164 |
try:
|
165 |
-
# Add timeout and better error handling for individual questions
|
166 |
-
start_time = time.time()
|
167 |
submitted_answer = agent(question_text)
|
168 |
-
|
169 |
-
|
170 |
-
print(f"Question {i+1} completed in {end_time - start_time:.2f} seconds")
|
171 |
-
|
172 |
-
# Validate the answer
|
173 |
-
if not submitted_answer or submitted_answer.strip() == "":
|
174 |
-
submitted_answer = "No answer generated"
|
175 |
-
|
176 |
-
# Clean up the answer further
|
177 |
-
submitted_answer = str(submitted_answer).strip()
|
178 |
-
if submitted_answer.startswith("Error:") or submitted_answer.startswith("Agent error:"):
|
179 |
-
submitted_answer = "Unable to process question"
|
180 |
-
|
181 |
-
answers_payload.append({
|
182 |
-
"task_id": task_id,
|
183 |
-
"submitted_answer": submitted_answer
|
184 |
-
})
|
185 |
-
|
186 |
-
results_log.append({
|
187 |
-
"Task ID": task_id,
|
188 |
-
"Question": question_text[:200] + "..." if len(question_text) > 200 else question_text,
|
189 |
-
"Submitted Answer": submitted_answer
|
190 |
-
})
|
191 |
-
|
192 |
except Exception as e:
|
193 |
print(f"Error running agent on task {task_id}: {e}")
|
194 |
-
|
195 |
-
answers_payload.append({
|
196 |
-
"task_id": task_id,
|
197 |
-
"submitted_answer": error_answer
|
198 |
-
})
|
199 |
-
results_log.append({
|
200 |
-
"Task ID": task_id,
|
201 |
-
"Question": question_text[:200] + "..." if len(question_text) > 200 else question_text,
|
202 |
-
"Submitted Answer": error_answer
|
203 |
-
})
|
204 |
|
205 |
if not answers_payload:
|
206 |
print("Agent did not produce any answers to submit.")
|
207 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
208 |
|
209 |
# 4. Prepare Submission
|
210 |
-
submission_data = {
|
211 |
-
"username": username.strip(),
|
212 |
-
"agent_code": agent_code,
|
213 |
-
"answers": answers_payload
|
214 |
-
}
|
215 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
216 |
print(status_update)
|
217 |
|
218 |
-
# 5. Submit
|
219 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
220 |
try:
|
221 |
-
response = requests.post(submit_url, json=submission_data, timeout=
|
222 |
response.raise_for_status()
|
223 |
result_data = response.json()
|
224 |
-
|
225 |
final_status = (
|
226 |
f"Submission Successful!\n"
|
227 |
-
f"User: {result_data.get('username'
|
228 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
229 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
230 |
f"Message: {result_data.get('message', 'No message received.')}"
|
231 |
)
|
232 |
print("Submission successful.")
|
233 |
-
print(f"Score: {result_data.get('score', 'N/A')}%")
|
234 |
-
|
235 |
results_df = pd.DataFrame(results_log)
|
236 |
return final_status, results_df
|
237 |
-
|
238 |
except requests.exceptions.HTTPError as e:
|
239 |
error_detail = f"Server responded with status {e.response.status_code}."
|
240 |
try:
|
@@ -246,19 +129,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
246 |
print(status_message)
|
247 |
results_df = pd.DataFrame(results_log)
|
248 |
return status_message, results_df
|
249 |
-
|
250 |
except requests.exceptions.Timeout:
|
251 |
status_message = "Submission Failed: The request timed out."
|
252 |
print(status_message)
|
253 |
results_df = pd.DataFrame(results_log)
|
254 |
return status_message, results_df
|
255 |
-
|
256 |
except requests.exceptions.RequestException as e:
|
257 |
status_message = f"Submission Failed: Network error - {e}"
|
258 |
print(status_message)
|
259 |
results_df = pd.DataFrame(results_log)
|
260 |
return status_message, results_df
|
261 |
-
|
262 |
except Exception as e:
|
263 |
status_message = f"An unexpected error occurred during submission: {e}"
|
264 |
print(status_message)
|
@@ -268,31 +148,26 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
268 |
|
269 |
# --- Build Gradio Interface using Blocks ---
|
270 |
with gr.Blocks() as demo:
|
271 |
-
gr.Markdown("#
|
272 |
gr.Markdown(
|
273 |
"""
|
274 |
**Instructions:**
|
275 |
-
1.
|
276 |
-
2.
|
277 |
-
3.
|
278 |
-
|
279 |
-
**Improvements in this version:**
|
280 |
-
- Enhanced mathematical tools (factorial, gcd, lcm, compound interest, etc.)
|
281 |
-
- Better search tools with error handling
|
282 |
-
- Improved HuggingFace model integration
|
283 |
-
- Better answer processing and cleanup
|
284 |
-
- Enhanced error handling and retry mechanisms
|
285 |
-
|
286 |
---
|
287 |
-
**
|
|
|
|
|
288 |
"""
|
289 |
)
|
290 |
|
291 |
gr.LoginButton()
|
292 |
|
293 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers"
|
294 |
|
295 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
296 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
297 |
|
298 |
run_button.click(
|
@@ -301,12 +176,10 @@ with gr.Blocks() as demo:
|
|
301 |
)
|
302 |
|
303 |
if __name__ == "__main__":
|
304 |
-
print("\n" + "-"*30 + "
|
305 |
-
|
306 |
-
# Check for environment variables
|
307 |
space_host_startup = os.getenv("SPACE_HOST")
|
308 |
-
space_id_startup = os.getenv("SPACE_ID")
|
309 |
-
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
310 |
|
311 |
if space_host_startup:
|
312 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -314,19 +187,15 @@ if __name__ == "__main__":
|
|
314 |
else:
|
315 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
316 |
|
317 |
-
if space_id_startup:
|
318 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
319 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
320 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
321 |
else:
|
322 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
|
323 |
-
|
324 |
-
if hf_token:
|
325 |
-
print("✅ HUGGINGFACE_INFERENCE_TOKEN found")
|
326 |
-
else:
|
327 |
-
print("⚠️ HUGGINGFACE_INFERENCE_TOKEN not found - this may cause issues")
|
328 |
|
329 |
-
print("-"*(60 + len("
|
330 |
|
331 |
-
print("Launching
|
332 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
from agent import build_graph
|
|
|
|
|
7 |
|
8 |
+
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
+
# --- Basic Agent Definition ---
|
13 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
14 |
class BasicAgent:
|
15 |
def __init__(self):
|
16 |
+
print("BasicAgent initialized.")
|
17 |
+
self.graph = build_graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def __call__(self, question: str) -> str:
|
20 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
21 |
+
# Wrap the question in a HumanMessage from langchain_core
|
22 |
+
messages = [HumanMessage(content=question)]
|
23 |
+
messages = self.graph.invoke({"messages": messages})
|
24 |
+
answer = messages['messages'][-1].content
|
25 |
+
return answer[14:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
29 |
"""
|
30 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
31 |
and displays the results.
|
|
|
34 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
35 |
|
36 |
if profile:
|
37 |
+
username= f"{profile.username}"
|
38 |
print(f"User logged in: {username}")
|
39 |
else:
|
40 |
print("User not logged in.")
|
|
|
44 |
questions_url = f"{api_url}/questions"
|
45 |
submit_url = f"{api_url}/submit"
|
46 |
|
47 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
48 |
try:
|
|
|
49 |
agent = BasicAgent()
|
|
|
50 |
except Exception as e:
|
51 |
print(f"Error instantiating agent: {e}")
|
|
|
|
|
52 |
return f"Error initializing agent: {e}", None
|
53 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
|
|
54 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
55 |
+
print(agent_code)
|
56 |
|
57 |
# 2. Fetch Questions
|
58 |
print(f"Fetching questions from: {questions_url}")
|
59 |
try:
|
60 |
+
response = requests.get(questions_url, timeout=15)
|
61 |
response.raise_for_status()
|
62 |
questions_data = response.json()
|
63 |
if not questions_data:
|
|
|
75 |
print(f"An unexpected error occurred fetching questions: {e}")
|
76 |
return f"An unexpected error occurred fetching questions: {e}", None
|
77 |
|
78 |
+
# 3. Run your Agent
|
79 |
results_log = []
|
80 |
answers_payload = []
|
81 |
print(f"Running agent on {len(questions_data)} questions...")
|
82 |
+
for item in questions_data:
|
|
|
83 |
task_id = item.get("task_id")
|
84 |
question_text = item.get("question")
|
|
|
85 |
if not task_id or question_text is None:
|
86 |
print(f"Skipping item with missing task_id or question: {item}")
|
87 |
continue
|
|
|
|
|
|
|
88 |
try:
|
|
|
|
|
89 |
submitted_answer = agent(question_text)
|
90 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
91 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
print(f"Error running agent on task {task_id}: {e}")
|
94 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
if not answers_payload:
|
97 |
print("Agent did not produce any answers to submit.")
|
98 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
99 |
|
100 |
# 4. Prepare Submission
|
101 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
102 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
103 |
print(status_update)
|
104 |
|
105 |
+
# 5. Submit
|
106 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
107 |
try:
|
108 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
109 |
response.raise_for_status()
|
110 |
result_data = response.json()
|
|
|
111 |
final_status = (
|
112 |
f"Submission Successful!\n"
|
113 |
+
f"User: {result_data.get('username')}\n"
|
114 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
115 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
116 |
f"Message: {result_data.get('message', 'No message received.')}"
|
117 |
)
|
118 |
print("Submission successful.")
|
|
|
|
|
119 |
results_df = pd.DataFrame(results_log)
|
120 |
return final_status, results_df
|
|
|
121 |
except requests.exceptions.HTTPError as e:
|
122 |
error_detail = f"Server responded with status {e.response.status_code}."
|
123 |
try:
|
|
|
129 |
print(status_message)
|
130 |
results_df = pd.DataFrame(results_log)
|
131 |
return status_message, results_df
|
|
|
132 |
except requests.exceptions.Timeout:
|
133 |
status_message = "Submission Failed: The request timed out."
|
134 |
print(status_message)
|
135 |
results_df = pd.DataFrame(results_log)
|
136 |
return status_message, results_df
|
|
|
137 |
except requests.exceptions.RequestException as e:
|
138 |
status_message = f"Submission Failed: Network error - {e}"
|
139 |
print(status_message)
|
140 |
results_df = pd.DataFrame(results_log)
|
141 |
return status_message, results_df
|
|
|
142 |
except Exception as e:
|
143 |
status_message = f"An unexpected error occurred during submission: {e}"
|
144 |
print(status_message)
|
|
|
148 |
|
149 |
# --- Build Gradio Interface using Blocks ---
|
150 |
with gr.Blocks() as demo:
|
151 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
152 |
gr.Markdown(
|
153 |
"""
|
154 |
**Instructions:**
|
155 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
156 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
157 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
---
|
159 |
+
**Disclaimers:**
|
160 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
161 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
162 |
"""
|
163 |
)
|
164 |
|
165 |
gr.LoginButton()
|
166 |
|
167 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
168 |
|
169 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
170 |
+
# Removed max_rows=10 from DataFrame constructor
|
171 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
172 |
|
173 |
run_button.click(
|
|
|
176 |
)
|
177 |
|
178 |
if __name__ == "__main__":
|
179 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
180 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
|
|
181 |
space_host_startup = os.getenv("SPACE_HOST")
|
182 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
|
|
183 |
|
184 |
if space_host_startup:
|
185 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
187 |
else:
|
188 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
189 |
|
190 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
191 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
192 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
193 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
194 |
else:
|
195 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
198 |
|
199 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
200 |
+
demo.launch(debug=True, share=False)
|
201 |
+
|
requirements.txt
CHANGED
@@ -3,27 +3,18 @@ requests
|
|
3 |
langchain
|
4 |
langchain-community
|
5 |
langchain-core
|
|
|
6 |
langchain-huggingface
|
7 |
-
langchain-
|
8 |
langchain-tavily
|
|
|
9 |
langgraph
|
10 |
sentence-transformers
|
11 |
huggingface_hub
|
12 |
-
transformers
|
13 |
-
torch
|
14 |
supabase
|
15 |
arxiv
|
16 |
pymupdf
|
17 |
wikipedia
|
18 |
pgvector
|
19 |
python-dotenv
|
20 |
-
protobuf==3.20.3
|
21 |
-
chromadb
|
22 |
-
tiktoken
|
23 |
-
numpy
|
24 |
-
pandas
|
25 |
-
scipy
|
26 |
-
sympy
|
27 |
-
python-dateutil
|
28 |
-
beautifulsoup4
|
29 |
-
lxml
|
|
|
3 |
langchain
|
4 |
langchain-community
|
5 |
langchain-core
|
6 |
+
langchain-google-genai
|
7 |
langchain-huggingface
|
8 |
+
langchain-groq
|
9 |
langchain-tavily
|
10 |
+
langchain-chroma
|
11 |
langgraph
|
12 |
sentence-transformers
|
13 |
huggingface_hub
|
|
|
|
|
14 |
supabase
|
15 |
arxiv
|
16 |
pymupdf
|
17 |
wikipedia
|
18 |
pgvector
|
19 |
python-dotenv
|
20 |
+
protobuf==3.20.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|