Spaces:
Runtime error
Runtime error
Initial commit with LlamaIndex-based agent
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
1 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
2 |
from llama_index.core.agent import ReActAgent
|
3 |
from llama_index.core.tools import FunctionTool
|
4 |
-
from transformers import AutoTokenizer
|
5 |
import os
|
6 |
import gradio as gr
|
7 |
import requests
|
@@ -9,9 +10,6 @@ import pandas as pd
|
|
9 |
import traceback
|
10 |
import torch
|
11 |
import re
|
12 |
-
import gc
|
13 |
-
from typing import List, Dict
|
14 |
-
from datetime import datetime
|
15 |
|
16 |
# Import real tool dependencies
|
17 |
try:
|
@@ -21,7 +19,7 @@ except ImportError:
|
|
21 |
DDGS = None
|
22 |
|
23 |
try:
|
24 |
-
from sympy import sympify
|
25 |
from sympy.core.sympify import SympifyError
|
26 |
except ImportError:
|
27 |
print("Warning: sympy not installed. Math calculator will be limited.")
|
@@ -30,460 +28,435 @@ except ImportError:
|
|
30 |
|
31 |
# --- Constants ---
|
32 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
33 |
-
MEMORY_LIMIT_GB = 16 # Your system's memory limit
|
34 |
|
35 |
# --- Advanced Agent Definition ---
|
36 |
class SmartAgent:
|
37 |
def __init__(self):
|
38 |
-
print(
|
39 |
-
self.model_loaded = False
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
model_options = [
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
]
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
if size_gb <= MEMORY_LIMIT_GB and self._try_load_model(model_name, quantization):
|
51 |
-
self.model_loaded = True
|
52 |
-
break
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
self.tools = [
|
59 |
FunctionTool.from_defaults(
|
60 |
-
fn=self.
|
61 |
name="web_search",
|
62 |
-
description="
|
63 |
),
|
64 |
FunctionTool.from_defaults(
|
65 |
-
fn=self.
|
66 |
name="math_calculator",
|
67 |
-
description="
|
68 |
)
|
69 |
]
|
70 |
|
71 |
-
#
|
72 |
try:
|
73 |
self.agent = ReActAgent.from_tools(
|
74 |
tools=self.tools,
|
75 |
llm=self.llm,
|
76 |
verbose=True,
|
77 |
-
max_iterations=
|
78 |
-
|
79 |
-
- For current/recent information: web_search
|
80 |
-
- For calculations: math_calculator
|
81 |
-
- Be concise but accurate"""
|
82 |
)
|
83 |
-
print("ReAct Agent initialized successfully")
|
84 |
except Exception as e:
|
85 |
-
print(f"
|
86 |
self.agent = None
|
87 |
|
88 |
-
def
|
89 |
-
"""
|
90 |
-
|
91 |
-
print(f"Loading {model_name} with {quantization} quantization...")
|
92 |
-
|
93 |
-
model_kwargs = {
|
94 |
-
"torch_dtype": torch.float16,
|
95 |
-
"low_cpu_mem_usage": True,
|
96 |
-
}
|
97 |
-
|
98 |
-
if quantization == "8-bit":
|
99 |
-
model_kwargs["load_in_8bit"] = True
|
100 |
-
elif quantization == "4-bit":
|
101 |
-
model_kwargs["load_in_4bit"] = True
|
102 |
-
|
103 |
-
self.llm = HuggingFaceLLM(
|
104 |
-
model_name=model_name,
|
105 |
-
tokenizer_name=model_name,
|
106 |
-
context_window=2048,
|
107 |
-
max_new_tokens=256,
|
108 |
-
generate_kwargs={
|
109 |
-
"temperature": 0.4,
|
110 |
-
"do_sample": True,
|
111 |
-
"top_p": 0.9,
|
112 |
-
"repetition_penalty": 1.1
|
113 |
-
},
|
114 |
-
device_map="auto" if torch.cuda.is_available() else "cpu",
|
115 |
-
model_kwargs=model_kwargs
|
116 |
-
)
|
117 |
-
|
118 |
-
# Test the model
|
119 |
-
test_response = self.llm.complete("Test response:")
|
120 |
-
if not test_response:
|
121 |
-
raise ValueError("Model failed test response")
|
122 |
-
|
123 |
-
print(f"Successfully loaded {model_name}")
|
124 |
-
return True
|
125 |
-
|
126 |
-
except Exception as e:
|
127 |
-
print(f"Failed to load {model_name}: {str(e)}")
|
128 |
-
self.cleanup_memory()
|
129 |
-
return False
|
130 |
-
|
131 |
-
def smart_web_search(self, query: str) -> str:
|
132 |
-
"""Enhanced web search with focused results"""
|
133 |
-
print(f"Searching: {query[:60]}...")
|
134 |
|
135 |
if not DDGS:
|
136 |
-
return "Web search unavailable
|
137 |
|
138 |
try:
|
139 |
with DDGS() as ddgs:
|
140 |
-
|
141 |
-
results = list(ddgs.text(query, max_results=3))
|
142 |
-
|
143 |
-
if not results:
|
144 |
-
return "No results found"
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
155 |
|
156 |
-
processed.append(
|
157 |
-
f"๐ Result {i}:\n"
|
158 |
-
f"Title: {title}\n"
|
159 |
-
f"Info: {key_info[:250]}\n"
|
160 |
-
f"Source: {url}\n"
|
161 |
-
)
|
162 |
-
|
163 |
-
return "\n".join(processed)
|
164 |
except Exception as e:
|
165 |
-
|
|
|
166 |
|
167 |
-
def
|
168 |
-
"""
|
169 |
-
|
170 |
-
text_lower = text.lower()
|
171 |
-
|
172 |
-
# Handle different question types
|
173 |
-
if any(w in query_lower for w in ['who is', 'biography', 'born']):
|
174 |
-
# Look for birth/death info
|
175 |
-
match = re.search(r"(born [^.]+? in [^.]+?\.)", text, re.I)
|
176 |
-
return match.group(1) if match else text[:250]
|
177 |
-
|
178 |
-
elif any(w in query_lower for w in ['died', 'death']):
|
179 |
-
match = re.search(r"(died [^.]+?\.)", text, re.I)
|
180 |
-
return match.group(1) if match else text[:250]
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
def
|
192 |
-
"
|
193 |
-
print(f"Calculating: {expression}")
|
194 |
|
195 |
-
#
|
196 |
-
|
197 |
|
198 |
-
#
|
199 |
-
|
200 |
-
'
|
201 |
-
'
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
|
206 |
-
#
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
if not all(c in allowed_chars for c in expr.replace(" ", "")):
|
214 |
-
return "Error: Invalid characters in expression"
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
except:
|
221 |
-
# Fallback to sympy if available
|
222 |
-
if sympify:
|
223 |
-
try:
|
224 |
-
result = sympify(expr).evalf()
|
225 |
-
return f"Result: {result}"
|
226 |
-
except SympifyError as e:
|
227 |
-
return f"Math error: {str(e)}"
|
228 |
-
return "Error: Could not evaluate the expression"
|
229 |
-
|
230 |
-
def __call__(self, question: str) -> str:
|
231 |
-
"""Main interface for answering questions"""
|
232 |
-
print(f"\nQuestion: {question[:100]}...")
|
233 |
|
234 |
try:
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
243 |
else:
|
244 |
-
return self.
|
245 |
|
246 |
except Exception as e:
|
247 |
-
print(f"
|
248 |
-
return self.
|
249 |
-
|
250 |
-
def
|
251 |
-
"""
|
252 |
-
q_lower = question.lower()
|
253 |
-
|
254 |
-
# Math questions
|
255 |
-
math_keywords = ['calculate', 'compute', 'sum', 'total', 'average',
|
256 |
-
'percentage', 'equation', 'solve', 'math', 'number',
|
257 |
-
'+', '-', '*', '/', '=']
|
258 |
-
if any(kw in q_lower for kw in math_keywords):
|
259 |
-
return "math"
|
260 |
-
|
261 |
-
# Fact-based questions
|
262 |
-
fact_keywords = ['current', 'latest', 'recent', 'today', 'news',
|
263 |
-
'who is', 'what is', 'when did', 'where is',
|
264 |
-
'competition', 'winner', 'recipient', 'nationality',
|
265 |
-
'country', 'malko', 'century', 'award', 'born', 'died']
|
266 |
-
if any(kw in q_lower for kw in fact_keywords):
|
267 |
-
return "fact"
|
268 |
-
|
269 |
-
return "general"
|
270 |
-
|
271 |
-
def _answer_fact_question(self, question: str) -> str:
|
272 |
-
"""Handle fact-based questions with web search"""
|
273 |
-
# Extract key entities for focused search
|
274 |
-
entities = re.findall(r"([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)", question)
|
275 |
-
search_query = " ".join(entities[:3]) or question[:50]
|
276 |
-
|
277 |
-
# Get search results
|
278 |
-
search_results = self.smart_web_search(search_query)
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
{search_results}
|
285 |
|
286 |
-
|
287 |
-
If the answer isn't there, say so."""
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
math_expr = re.search(r"([\d\s+\-*/().^]+)", question)
|
301 |
-
if math_expr:
|
302 |
-
return self.robust_math_calculator(math_expr.group(1))
|
303 |
-
|
304 |
-
# If no clear expression, use agent reasoning
|
305 |
-
if self.agent:
|
306 |
-
try:
|
307 |
-
response = self.agent.query(question)
|
308 |
-
return str(response)
|
309 |
-
except:
|
310 |
-
return self._fallback_response(question)
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
return str(response)
|
320 |
-
except:
|
321 |
-
return self._fallback_response(question)
|
322 |
|
323 |
-
# Fallback to
|
324 |
-
|
325 |
-
response = self.llm.complete(question)
|
326 |
-
return str(response)
|
327 |
-
except:
|
328 |
-
return self._fallback_response(question)
|
329 |
|
330 |
-
def _fallback_response(self, question: str) -> str:
|
331 |
-
"""Final fallback when all else fails"""
|
332 |
-
return f"I couldn't generate a complete answer for: {question[:150]}... Please try rephrasing or ask about something more specific."
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
|
340 |
|
341 |
-
# --- Submission Logic ---
|
342 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
343 |
-
"""
|
344 |
space_id = os.getenv("SPACE_ID")
|
345 |
|
346 |
-
if profile:
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
return "Please Login to Hugging Face with the button.", None
|
352 |
|
353 |
api_url = DEFAULT_API_URL
|
354 |
questions_url = f"{api_url}/questions"
|
355 |
submit_url = f"{api_url}/submit"
|
356 |
|
357 |
-
|
|
|
|
|
358 |
try:
|
359 |
agent = SmartAgent()
|
360 |
except Exception as e:
|
361 |
-
print(f"Agent initialization failed: {e}")
|
362 |
-
return f"
|
363 |
|
364 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
365 |
-
print(f"Agent code URL: {agent_code}")
|
366 |
|
367 |
-
# Fetch
|
368 |
-
print(f"Fetching questions from: {questions_url}")
|
369 |
try:
|
370 |
-
response = requests.get(questions_url, timeout=
|
371 |
response.raise_for_status()
|
372 |
questions_data = response.json()
|
373 |
-
|
374 |
-
return "No questions received from server.", None
|
375 |
-
print(f"Fetched {len(questions_data)} questions.")
|
376 |
except Exception as e:
|
377 |
-
return f"Error fetching questions: {e}", None
|
378 |
|
379 |
-
# Process
|
380 |
results_log = []
|
381 |
answers_payload = []
|
382 |
|
383 |
for i, item in enumerate(questions_data, 1):
|
384 |
task_id = item.get("task_id")
|
385 |
-
|
386 |
|
387 |
-
if not task_id or not
|
388 |
continue
|
389 |
|
390 |
-
print(f"
|
|
|
391 |
|
392 |
try:
|
393 |
-
answer = agent(
|
|
|
|
|
|
|
|
|
|
|
394 |
answers_payload.append({
|
395 |
-
"task_id": task_id,
|
396 |
-
"submitted_answer": answer
|
397 |
})
|
|
|
398 |
results_log.append({
|
399 |
"Task ID": task_id,
|
400 |
-
"Question":
|
401 |
-
"Answer": answer[:
|
402 |
})
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
|
|
|
|
407 |
|
408 |
except Exception as e:
|
409 |
-
print(f"Error on
|
|
|
410 |
answers_payload.append({
|
411 |
-
"task_id": task_id,
|
412 |
-
"submitted_answer":
|
413 |
})
|
414 |
results_log.append({
|
415 |
"Task ID": task_id,
|
416 |
-
"Question":
|
417 |
-
"Answer":
|
418 |
})
|
419 |
|
420 |
-
# Submit
|
421 |
submission_data = {
|
422 |
"username": username.strip(),
|
423 |
"agent_code": agent_code,
|
424 |
"answers": answers_payload
|
425 |
}
|
426 |
|
427 |
-
print(f"Submitting {len(answers_payload)} answers...")
|
|
|
428 |
try:
|
429 |
-
response = requests.post(submit_url, json=submission_data, timeout=
|
430 |
response.raise_for_status()
|
431 |
-
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
except Exception as e:
|
443 |
-
error_msg = f"โ Submission
|
444 |
print(error_msg)
|
445 |
return error_msg, pd.DataFrame(results_log)
|
446 |
|
447 |
|
448 |
# --- Gradio UI ---
|
449 |
-
with gr.Blocks(title="
|
|
|
450 |
gr.Markdown("""
|
451 |
-
|
452 |
-
**Run your local agent against the course evaluation questions**
|
453 |
-
""")
|
454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
with gr.Row():
|
456 |
-
gr.LoginButton()
|
457 |
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
label="
|
465 |
-
|
|
|
|
|
466 |
)
|
467 |
|
468 |
results_table = gr.DataFrame(
|
469 |
-
label="
|
470 |
-
interactive=False,
|
471 |
wrap=True
|
472 |
)
|
473 |
|
474 |
-
|
475 |
fn=run_and_submit_all,
|
476 |
-
outputs=[
|
477 |
)
|
478 |
|
479 |
-
|
480 |
if __name__ == "__main__":
|
481 |
-
print("
|
482 |
-
print(f"๐ Starting Agent Evaluation - {datetime.now().strftime('%Y-%m-%d %H:%M')}")
|
483 |
-
print(f"Memory Limit: {MEMORY_LIMIT_GB}GB")
|
484 |
-
print("="*60)
|
485 |
-
|
486 |
demo.launch(
|
487 |
server_name="0.0.0.0",
|
488 |
-
server_port=7860
|
|
|
489 |
)
|
|
|
1 |
+
# app.py - Optimized for 16GB Memory
|
2 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
3 |
from llama_index.core.agent import ReActAgent
|
4 |
from llama_index.core.tools import FunctionTool
|
5 |
+
from transformers import AutoTokenizer
|
6 |
import os
|
7 |
import gradio as gr
|
8 |
import requests
|
|
|
10 |
import traceback
|
11 |
import torch
|
12 |
import re
|
|
|
|
|
|
|
13 |
|
14 |
# Import real tool dependencies
|
15 |
try:
|
|
|
19 |
DDGS = None
|
20 |
|
21 |
try:
|
22 |
+
from sympy import sympify, solve, simplify, N
|
23 |
from sympy.core.sympify import SympifyError
|
24 |
except ImportError:
|
25 |
print("Warning: sympy not installed. Math calculator will be limited.")
|
|
|
28 |
|
29 |
# --- Constants ---
|
30 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
31 |
|
32 |
# --- Advanced Agent Definition ---
|
33 |
class SmartAgent:
|
34 |
def __init__(self):
|
35 |
+
print("Initializing Optimized LLM Agent for 16GB Memory...")
|
|
|
36 |
|
37 |
+
# Check available memory and CUDA
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
|
40 |
+
device_map = "auto"
|
41 |
+
else:
|
42 |
+
print("CUDA not available, using CPU")
|
43 |
+
device_map = "cpu"
|
44 |
+
|
45 |
+
# Use a better model for 16GB - these are proven to work well
|
46 |
model_options = [
|
47 |
+
"microsoft/DialoGPT-medium",
|
48 |
+
"google/flan-t5-large", # Better reasoning capability
|
49 |
+
"microsoft/DialoGPT-large", # Good for conversation
|
50 |
]
|
51 |
|
52 |
+
model_name = model_options[1] # flan-t5-large for better reasoning
|
53 |
+
print(f"Loading model: {model_name}")
|
|
|
|
|
|
|
54 |
|
55 |
+
try:
|
56 |
+
self.llm = HuggingFaceLLM(
|
57 |
+
model_name=model_name,
|
58 |
+
tokenizer_name=model_name,
|
59 |
+
context_window=2048, # Larger context for better understanding
|
60 |
+
max_new_tokens=512, # More tokens for detailed answers
|
61 |
+
generate_kwargs={
|
62 |
+
"temperature": 0.1, # Very low temperature for accuracy
|
63 |
+
"do_sample": True,
|
64 |
+
"top_p": 0.95,
|
65 |
+
"repetition_penalty": 1.2,
|
66 |
+
"pad_token_id": 0, # Add explicit pad token
|
67 |
+
},
|
68 |
+
device_map=device_map,
|
69 |
+
model_kwargs={
|
70 |
+
"torch_dtype": torch.float16,
|
71 |
+
"low_cpu_mem_usage": True,
|
72 |
+
"trust_remote_code": True,
|
73 |
+
},
|
74 |
+
# Better system message for instruction following
|
75 |
+
system_message="""You are a precise AI assistant. When asked a question:
|
76 |
+
1. If it needs current information, use web_search tool
|
77 |
+
2. If it involves calculations, use math_calculator tool
|
78 |
+
3. Provide direct, accurate answers
|
79 |
+
4. Always be specific and factual"""
|
80 |
+
)
|
81 |
+
print(f"Successfully loaded model: {model_name}")
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Failed to load {model_name}: {e}")
|
85 |
+
# Try smaller fallback
|
86 |
+
fallback_model = "microsoft/DialoGPT-medium"
|
87 |
+
print(f"Falling back to: {fallback_model}")
|
88 |
+
self.llm = HuggingFaceLLM(
|
89 |
+
model_name=fallback_model,
|
90 |
+
tokenizer_name=fallback_model,
|
91 |
+
context_window=1024,
|
92 |
+
max_new_tokens=256,
|
93 |
+
generate_kwargs={
|
94 |
+
"temperature": 0.1,
|
95 |
+
"do_sample": True,
|
96 |
+
"top_p": 0.9,
|
97 |
+
"repetition_penalty": 1.1,
|
98 |
+
},
|
99 |
+
device_map=device_map,
|
100 |
+
model_kwargs={
|
101 |
+
"torch_dtype": torch.float16,
|
102 |
+
"low_cpu_mem_usage": True,
|
103 |
+
}
|
104 |
+
)
|
105 |
+
print(f"Successfully loaded fallback model: {fallback_model}")
|
106 |
|
107 |
+
# Define tools with improved implementations
|
108 |
self.tools = [
|
109 |
FunctionTool.from_defaults(
|
110 |
+
fn=self.web_search,
|
111 |
name="web_search",
|
112 |
+
description="Search the web for current information, facts, or recent events. Use when you need up-to-date information."
|
113 |
),
|
114 |
FunctionTool.from_defaults(
|
115 |
+
fn=self.math_calculator,
|
116 |
name="math_calculator",
|
117 |
+
description="Perform mathematical calculations, solve equations, or evaluate mathematical expressions."
|
118 |
)
|
119 |
]
|
120 |
|
121 |
+
# Create ReAct agent with better settings
|
122 |
try:
|
123 |
self.agent = ReActAgent.from_tools(
|
124 |
tools=self.tools,
|
125 |
llm=self.llm,
|
126 |
verbose=True,
|
127 |
+
max_iterations=5, # Allow more iterations for complex problems
|
128 |
+
max_function_calls=10, # Allow more tool calls
|
|
|
|
|
|
|
129 |
)
|
130 |
+
print("ReAct Agent initialized successfully.")
|
131 |
except Exception as e:
|
132 |
+
print(f"Error creating ReAct agent: {e}")
|
133 |
self.agent = None
|
134 |
|
135 |
+
def web_search(self, query: str) -> str:
|
136 |
+
"""Enhanced web search with better result formatting"""
|
137 |
+
print(f"๐ Web search: {query}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
if not DDGS:
|
140 |
+
return "Web search unavailable - duckduckgo_search not installed"
|
141 |
|
142 |
try:
|
143 |
with DDGS() as ddgs:
|
144 |
+
results = list(ddgs.text(query, max_results=8, region='wt-wt'))
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
if results:
|
147 |
+
# Format results more concisely for the LLM
|
148 |
+
formatted_results = []
|
149 |
+
for i, r in enumerate(results[:5], 1): # Top 5 results
|
150 |
+
title = r.get('title', 'No title')
|
151 |
+
body = r.get('body', 'No description')
|
152 |
+
# Clean and truncate body
|
153 |
+
body = body.replace('\n', ' ').strip()[:200]
|
154 |
+
formatted_results.append(f"{i}. {title}: {body}")
|
155 |
|
156 |
+
search_summary = f"Search results for '{query}':\n" + "\n".join(formatted_results)
|
157 |
+
print(f"โ
Found {len(results)} results")
|
158 |
+
return search_summary
|
159 |
+
else:
|
160 |
+
return f"No results found for '{query}'. Try different keywords."
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
except Exception as e:
|
163 |
+
print(f"โ Web search error: {e}")
|
164 |
+
return f"Search error for '{query}': {str(e)}"
|
165 |
|
166 |
+
def math_calculator(self, expression: str) -> str:
|
167 |
+
"""Enhanced math calculator with better parsing"""
|
168 |
+
print(f"๐งฎ Math calculation: {expression}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
if not sympify:
|
171 |
+
# Basic fallback
|
172 |
+
try:
|
173 |
+
# Clean expression
|
174 |
+
clean_expr = expression.replace('^', '**').replace('ร', '*').replace('รท', '/')
|
175 |
+
result = eval(clean_expr)
|
176 |
+
return f"Result: {result}"
|
177 |
+
except Exception as e:
|
178 |
+
return f"Math error: {str(e)}"
|
179 |
|
180 |
+
try:
|
181 |
+
# Clean and prepare expression
|
182 |
+
clean_expr = expression.replace('^', '**').replace('ร', '*').replace('รท', '/')
|
183 |
+
|
184 |
+
# Try to evaluate
|
185 |
+
result = sympify(clean_expr)
|
186 |
+
|
187 |
+
# If it's an equation, try to solve it
|
188 |
+
if '=' in expression:
|
189 |
+
# Extract variable and solve
|
190 |
+
parts = expression.split('=')
|
191 |
+
if len(parts) == 2:
|
192 |
+
eq = sympify(f"Eq({parts[0]}, {parts[1]})")
|
193 |
+
solution = solve(eq)
|
194 |
+
return f"Solution: {solution}"
|
195 |
+
|
196 |
+
# Evaluate numerically
|
197 |
+
numerical_result = N(result, 10) # 10 decimal places
|
198 |
+
return f"Result: {numerical_result}"
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"โ Math error: {e}")
|
202 |
+
return f"Could not calculate '{expression}': {str(e)}"
|
203 |
|
204 |
+
def __call__(self, question: str) -> str:
|
205 |
+
print(f"๐ค Processing: {question[:100]}...")
|
|
|
206 |
|
207 |
+
# Enhanced question analysis
|
208 |
+
question_lower = question.lower()
|
209 |
|
210 |
+
# Better detection of search needs
|
211 |
+
search_indicators = [
|
212 |
+
'who is', 'what is', 'when did', 'where is', 'current', 'latest', 'recent',
|
213 |
+
'today', 'news', 'winner', 'recipient', 'nationality', 'born in', 'died',
|
214 |
+
'malko', 'competition', 'award', 'century', 'president', 'capital of',
|
215 |
+
'population of', 'founded', 'established', 'discovery', 'invented'
|
216 |
+
]
|
217 |
|
218 |
+
# Math detection
|
219 |
+
math_indicators = [
|
220 |
+
'calculate', 'compute', 'solve', 'equation', 'sum', 'total', 'average',
|
221 |
+
'percentage', 'multiply', 'divide', 'add', 'subtract', '+', '-', '*', '/',
|
222 |
+
'=', 'x=', 'y=', 'find x', 'find y'
|
223 |
+
]
|
224 |
|
225 |
+
needs_search = any(indicator in question_lower for indicator in search_indicators)
|
226 |
+
needs_math = any(indicator in question_lower for indicator in math_indicators)
|
|
|
|
|
227 |
|
228 |
+
# Has numbers in question
|
229 |
+
has_numbers = bool(re.search(r'\d', question))
|
230 |
+
if has_numbers and any(op in question for op in ['+', '-', '*', '/', '=', '^']):
|
231 |
+
needs_math = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
try:
|
234 |
+
if self.agent:
|
235 |
+
# Use ReAct agent
|
236 |
+
response = self.agent.query(question)
|
237 |
+
response_str = str(response)
|
238 |
+
|
239 |
+
# Check response quality
|
240 |
+
if len(response_str.strip()) < 10 or any(bad in response_str.lower() for bad in ['error', 'sorry', 'cannot', "don't know"]):
|
241 |
+
print("โ ๏ธ Agent response seems poor, trying direct approach...")
|
242 |
+
return self._direct_approach(question, needs_search, needs_math)
|
243 |
+
|
244 |
+
return response_str
|
245 |
else:
|
246 |
+
return self._direct_approach(question, needs_search, needs_math)
|
247 |
|
248 |
except Exception as e:
|
249 |
+
print(f"โ Agent error: {str(e)}")
|
250 |
+
return self._direct_approach(question, needs_search, needs_math)
|
251 |
+
|
252 |
+
def _direct_approach(self, question: str, needs_search: bool, needs_math: bool) -> str:
|
253 |
+
"""Direct tool usage when agent fails"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
if needs_search:
|
256 |
+
# Extract better search terms
|
257 |
+
important_words = []
|
258 |
+
words = question.replace('?', '').split()
|
|
|
259 |
|
260 |
+
skip_words = {'what', 'when', 'where', 'who', 'how', 'is', 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
|
|
261 |
|
262 |
+
for word in words:
|
263 |
+
clean_word = word.lower().strip('.,!?;:')
|
264 |
+
if len(clean_word) > 2 and clean_word not in skip_words:
|
265 |
+
important_words.append(clean_word)
|
266 |
+
|
267 |
+
# Take up to 4 most important terms
|
268 |
+
search_query = ' '.join(important_words[:4])
|
269 |
+
|
270 |
+
if search_query:
|
271 |
+
result = self.web_search(search_query)
|
272 |
+
return f"Based on web search:\n\n{result}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
if needs_math:
|
275 |
+
# Extract mathematical expressions
|
276 |
+
math_expressions = re.findall(r'[\d+\-*/().\s=x]+', question)
|
277 |
+
for expr in math_expressions:
|
278 |
+
if any(op in expr for op in ['+', '-', '*', '/', '=']):
|
279 |
+
result = self.math_calculator(expr.strip())
|
280 |
+
return f"Mathematical calculation:\n{result}"
|
|
|
|
|
|
|
281 |
|
282 |
+
# Fallback: try to give a reasonable response
|
283 |
+
return f"I need more specific information to answer: {question[:100]}... Please provide additional context or rephrase your question."
|
|
|
|
|
|
|
|
|
284 |
|
|
|
|
|
|
|
285 |
|
286 |
+
def cleanup_memory():
|
287 |
+
"""Clean up GPU memory"""
|
288 |
+
if torch.cuda.is_available():
|
289 |
+
torch.cuda.empty_cache()
|
290 |
+
print("๐งน GPU memory cleared")
|
291 |
|
292 |
|
|
|
293 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
294 |
+
"""Enhanced submission with better error handling"""
|
295 |
space_id = os.getenv("SPACE_ID")
|
296 |
|
297 |
+
if not profile:
|
298 |
+
return "โ Please Login to Hugging Face first.", None
|
299 |
+
|
300 |
+
username = f"{profile.username}"
|
301 |
+
print(f"๐ค User: {username}")
|
|
|
302 |
|
303 |
api_url = DEFAULT_API_URL
|
304 |
questions_url = f"{api_url}/questions"
|
305 |
submit_url = f"{api_url}/submit"
|
306 |
|
307 |
+
cleanup_memory()
|
308 |
+
|
309 |
+
# Initialize agent
|
310 |
try:
|
311 |
agent = SmartAgent()
|
312 |
except Exception as e:
|
313 |
+
print(f"โ Agent initialization failed: {e}")
|
314 |
+
return f"Failed to initialize agent: {e}", None
|
315 |
|
316 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
317 |
|
318 |
+
# Fetch questions
|
|
|
319 |
try:
|
320 |
+
response = requests.get(questions_url, timeout=30)
|
321 |
response.raise_for_status()
|
322 |
questions_data = response.json()
|
323 |
+
print(f"๐ Fetched {len(questions_data)} questions")
|
|
|
|
|
324 |
except Exception as e:
|
325 |
+
return f"โ Error fetching questions: {e}", None
|
326 |
|
327 |
+
# Process questions with better tracking
|
328 |
results_log = []
|
329 |
answers_payload = []
|
330 |
|
331 |
for i, item in enumerate(questions_data, 1):
|
332 |
task_id = item.get("task_id")
|
333 |
+
question_text = item.get("question")
|
334 |
|
335 |
+
if not task_id or not question_text:
|
336 |
continue
|
337 |
|
338 |
+
print(f"\n๐ Question {i}/{len(questions_data)}: {task_id}")
|
339 |
+
print(f"Q: {question_text[:150]}...")
|
340 |
|
341 |
try:
|
342 |
+
answer = agent(question_text)
|
343 |
+
|
344 |
+
# Ensure answer is not empty or generic
|
345 |
+
if not answer or len(answer.strip()) < 3:
|
346 |
+
answer = f"Unable to process question: {question_text[:50]}..."
|
347 |
+
|
348 |
answers_payload.append({
|
349 |
+
"task_id": task_id,
|
350 |
+
"submitted_answer": answer
|
351 |
})
|
352 |
+
|
353 |
results_log.append({
|
354 |
"Task ID": task_id,
|
355 |
+
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
356 |
+
"Answer": answer[:150] + "..." if len(answer) > 150 else answer
|
357 |
})
|
358 |
|
359 |
+
print(f"โ
A: {answer[:100]}...")
|
360 |
+
|
361 |
+
# Memory cleanup every 3 questions
|
362 |
+
if i % 3 == 0:
|
363 |
+
cleanup_memory()
|
364 |
|
365 |
except Exception as e:
|
366 |
+
print(f"โ Error on {task_id}: {e}")
|
367 |
+
error_answer = f"Processing error: {str(e)[:100]}"
|
368 |
answers_payload.append({
|
369 |
+
"task_id": task_id,
|
370 |
+
"submitted_answer": error_answer
|
371 |
})
|
372 |
results_log.append({
|
373 |
"Task ID": task_id,
|
374 |
+
"Question": question_text[:100] + "...",
|
375 |
+
"Answer": error_answer
|
376 |
})
|
377 |
|
378 |
+
# Submit answers
|
379 |
submission_data = {
|
380 |
"username": username.strip(),
|
381 |
"agent_code": agent_code,
|
382 |
"answers": answers_payload
|
383 |
}
|
384 |
|
385 |
+
print(f"\n๐ค Submitting {len(answers_payload)} answers...")
|
386 |
+
|
387 |
try:
|
388 |
+
response = requests.post(submit_url, json=submission_data, timeout=120)
|
389 |
response.raise_for_status()
|
390 |
+
result_data = response.json()
|
391 |
|
392 |
+
score = result_data.get('score', 0)
|
393 |
+
correct = result_data.get('correct_count', 0)
|
394 |
+
total = result_data.get('total_attempted', len(answers_payload))
|
395 |
+
|
396 |
+
final_status = f"""๐ Submission Complete!
|
397 |
+
|
398 |
+
๐ค User: {result_data.get('username')}
|
399 |
+
๐ Score: {score}% ({correct}/{total} correct)
|
400 |
+
๐ฌ {result_data.get('message', 'No message')}
|
401 |
+
|
402 |
+
Target: 30%+ โ {'ACHIEVED!' if score >= 30 else 'Need improvement'}"""
|
403 |
+
|
404 |
+
print(f"โ
Final Score: {score}%")
|
405 |
+
return final_status, pd.DataFrame(results_log)
|
406 |
|
407 |
except Exception as e:
|
408 |
+
error_msg = f"โ Submission failed: {str(e)}"
|
409 |
print(error_msg)
|
410 |
return error_msg, pd.DataFrame(results_log)
|
411 |
|
412 |
|
413 |
# --- Gradio UI ---
|
414 |
+
with gr.Blocks(title="Optimized Agent Evaluation", theme=gr.themes.Soft()) as demo:
|
415 |
+
gr.Markdown("# ๐ Optimized Agent for 16GB Memory")
|
416 |
gr.Markdown("""
|
417 |
+
**Target: 30%+ Score**
|
|
|
|
|
418 |
|
419 |
+
**Optimizations:**
|
420 |
+
- ๐ง Better model selection (flan-t5-large)
|
421 |
+
- ๐ Enhanced web search with DuckDuckGo
|
422 |
+
- ๐งฎ Advanced math calculator with SymPy
|
423 |
+
- ๐ฏ Improved question analysis and routing
|
424 |
+
- ๐พ Memory management for 16GB systems
|
425 |
+
- ๐ง Robust error handling and fallbacks
|
426 |
+
""")
|
427 |
+
|
428 |
with gr.Row():
|
429 |
+
gr.LoginButton(scale=1)
|
430 |
|
431 |
+
with gr.Row():
|
432 |
+
run_button = gr.Button(
|
433 |
+
"๐ Run Optimized Evaluation",
|
434 |
+
variant="primary",
|
435 |
+
size="lg",
|
436 |
+
scale=2
|
437 |
+
)
|
438 |
|
439 |
+
status_output = gr.Textbox(
|
440 |
+
label="๐ Status & Results",
|
441 |
+
lines=10,
|
442 |
+
interactive=False,
|
443 |
+
placeholder="Ready to run evaluation..."
|
444 |
)
|
445 |
|
446 |
results_table = gr.DataFrame(
|
447 |
+
label="๐ Detailed Results",
|
|
|
448 |
wrap=True
|
449 |
)
|
450 |
|
451 |
+
run_button.click(
|
452 |
fn=run_and_submit_all,
|
453 |
+
outputs=[status_output, results_table]
|
454 |
)
|
455 |
|
|
|
456 |
if __name__ == "__main__":
|
457 |
+
print("๐ Starting Optimized Agent for 16GB Memory...")
|
|
|
|
|
|
|
|
|
458 |
demo.launch(
|
459 |
server_name="0.0.0.0",
|
460 |
+
server_port=7860,
|
461 |
+
show_error=True
|
462 |
)
|