Spaces:
Runtime error
Runtime error
Deploy GAIA agent
Browse files- app.py +197 -18
- requirements.txt +10 -6
app.py
CHANGED
@@ -4,9 +4,10 @@ import os
|
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
|
|
|
|
7 |
|
8 |
from smolagents import CodeAgent, tool
|
9 |
-
from smolagents.models import LiteLLMModel # ✅ correct import
|
10 |
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -37,25 +38,196 @@ def simple_search(query: str) -> str:
|
|
37 |
except Exception as e:
|
38 |
return f"Search error: {e}"
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
# ---
|
42 |
class BasicAgent:
|
43 |
def __init__(self):
|
44 |
-
print("BasicAgent
|
45 |
-
self.model =
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
model=self.model,
|
52 |
-
tools=[simple_search]
|
53 |
-
)
|
54 |
|
55 |
def __call__(self, question: str) -> str:
|
56 |
print(f"Question: {question[:60]}...")
|
|
|
57 |
try:
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
except Exception as e:
|
60 |
return f"Agent error: {e}"
|
61 |
|
@@ -83,14 +255,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
83 |
return f"Error fetching questions: {e}", None
|
84 |
|
85 |
logs, answers = [], []
|
86 |
-
for item in questions:
|
87 |
task_id = item.get("task_id")
|
88 |
question = item.get("question")
|
89 |
if not task_id or question is None:
|
90 |
continue
|
|
|
|
|
91 |
ans = agent(question)
|
92 |
answers.append({"task_id": task_id, "submitted_answer": ans})
|
93 |
-
logs.append({"Task ID": task_id, "Question": question, "Submitted Answer": ans})
|
94 |
|
95 |
if not answers:
|
96 |
return "Agent produced no answers.", pd.DataFrame(logs)
|
@@ -113,13 +287,18 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
113 |
# --- Gradio Interface ---
|
114 |
with gr.Blocks() as demo:
|
115 |
gr.Markdown("# GAIA Agent Evaluation Runner")
|
|
|
|
|
116 |
gr.LoginButton()
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
119 |
result_table = gr.DataFrame(label="Questions & Agent Answers", wrap=True)
|
120 |
|
121 |
run_button.click(run_and_submit_all, outputs=[status_box, result_table])
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
print("Launching Gradio app...")
|
125 |
-
demo.launch(debug=True, share=False)
|
|
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
8 |
+
import torch
|
9 |
|
10 |
from smolagents import CodeAgent, tool
|
|
|
11 |
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
38 |
except Exception as e:
|
39 |
return f"Search error: {e}"
|
40 |
|
41 |
+
# --- Wikipedia Search Tool ---
|
42 |
+
@tool
|
43 |
+
def wikipedia_search(query: str) -> str:
|
44 |
+
"""
|
45 |
+
Searches Wikipedia for information.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
query (str): The search query text.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
str: Wikipedia search results.
|
52 |
+
"""
|
53 |
+
try:
|
54 |
+
import wikipedia
|
55 |
+
wikipedia.set_lang("en")
|
56 |
+
results = wikipedia.search(query, results=3)
|
57 |
+
if not results:
|
58 |
+
return "No Wikipedia results found."
|
59 |
+
|
60 |
+
summaries = []
|
61 |
+
for title in results[:2]: # Get top 2 results
|
62 |
+
try:
|
63 |
+
page = wikipedia.page(title)
|
64 |
+
summary = wikipedia.summary(title, sentences=3)
|
65 |
+
summaries.append(f"**{title}**\n{summary}\nURL: {page.url}")
|
66 |
+
except:
|
67 |
+
continue
|
68 |
+
|
69 |
+
return "\n\n".join(summaries) if summaries else "No detailed results found."
|
70 |
+
except Exception as e:
|
71 |
+
return f"Wikipedia search error: {e}"
|
72 |
+
|
73 |
+
# --- Calculator Tool ---
|
74 |
+
@tool
|
75 |
+
def calculator(expression: str) -> str:
|
76 |
+
"""
|
77 |
+
Evaluates mathematical expressions safely.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
expression (str): Mathematical expression to evaluate.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
str: Result of the calculation.
|
84 |
+
"""
|
85 |
+
try:
|
86 |
+
# Basic safety check
|
87 |
+
allowed_chars = set('0123456789+-*/.() ')
|
88 |
+
if not all(c in allowed_chars for c in expression):
|
89 |
+
return "Error: Invalid characters in expression"
|
90 |
+
|
91 |
+
result = eval(expression)
|
92 |
+
return str(result)
|
93 |
+
except Exception as e:
|
94 |
+
return f"Calculation error: {e}"
|
95 |
+
|
96 |
+
# --- Custom HuggingFace Model Wrapper ---
|
97 |
+
class HuggingFaceModel:
|
98 |
+
def __init__(self, model_name="microsoft/DialoGPT-small"):
|
99 |
+
"""
|
100 |
+
Initialize with a lightweight model that fits in 16GB RAM
|
101 |
+
"""
|
102 |
+
print(f"Loading model: {model_name}")
|
103 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
104 |
+
|
105 |
+
try:
|
106 |
+
# Use a smaller, more efficient model
|
107 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
108 |
+
if self.tokenizer.pad_token is None:
|
109 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
110 |
+
|
111 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
112 |
+
model_name,
|
113 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
114 |
+
device_map="auto" if self.device == "cuda" else None,
|
115 |
+
trust_remote_code=True
|
116 |
+
)
|
117 |
+
|
118 |
+
if self.device == "cpu":
|
119 |
+
self.model = self.model.to(self.device)
|
120 |
+
|
121 |
+
print(f"Model loaded successfully on {self.device}")
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Error loading model: {e}")
|
125 |
+
# Fallback to an even smaller model
|
126 |
+
print("Falling back to distilgpt2...")
|
127 |
+
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
128 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
129 |
+
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
130 |
+
if self.device == "cuda":
|
131 |
+
self.model = self.model.to(self.device)
|
132 |
+
|
133 |
+
def generate(self, prompt: str, max_length: int = 512) -> str:
|
134 |
+
"""
|
135 |
+
Generate text response from the model
|
136 |
+
"""
|
137 |
+
try:
|
138 |
+
# Encode the prompt
|
139 |
+
inputs = self.tokenizer.encode(prompt, return_tensors="pt", truncate=True, max_length=400)
|
140 |
+
if self.device == "cuda":
|
141 |
+
inputs = inputs.to(self.device)
|
142 |
+
|
143 |
+
# Generate response
|
144 |
+
with torch.no_grad():
|
145 |
+
outputs = self.model.generate(
|
146 |
+
inputs,
|
147 |
+
max_length=min(max_length, inputs.size(1) + 200),
|
148 |
+
num_return_sequences=1,
|
149 |
+
temperature=0.7,
|
150 |
+
do_sample=True,
|
151 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
152 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
153 |
+
attention_mask=torch.ones_like(inputs)
|
154 |
+
)
|
155 |
+
|
156 |
+
# Decode the response
|
157 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
158 |
+
|
159 |
+
# Extract only the new part (remove the input prompt)
|
160 |
+
if response.startswith(prompt):
|
161 |
+
response = response[len(prompt):].strip()
|
162 |
+
|
163 |
+
return response if response else "I need more information to answer this question."
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
return f"Generation error: {e}"
|
167 |
|
168 |
+
# --- Simple Agent Implementation ---
|
169 |
class BasicAgent:
|
170 |
def __init__(self):
|
171 |
+
print("BasicAgent initializing with HuggingFace model...")
|
172 |
+
self.model = HuggingFaceModel("microsoft/DialoGPT-medium") # Changed to medium for better performance
|
173 |
+
self.tools = {
|
174 |
+
"search": simple_search,
|
175 |
+
"wikipedia": wikipedia_search,
|
176 |
+
"calculator": calculator
|
177 |
+
}
|
|
|
|
|
|
|
178 |
|
179 |
def __call__(self, question: str) -> str:
|
180 |
print(f"Question: {question[:60]}...")
|
181 |
+
|
182 |
try:
|
183 |
+
# Simple logic to determine if we need tools
|
184 |
+
question_lower = question.lower()
|
185 |
+
|
186 |
+
# Check if it's a math question
|
187 |
+
if any(word in question_lower for word in ['calculate', 'compute', 'math', '+', '-', '*', '/', 'sum', 'total']):
|
188 |
+
# Try to extract mathematical expressions
|
189 |
+
import re
|
190 |
+
math_pattern = r'[\d\+\-\*/\.\(\)\s]+'
|
191 |
+
math_matches = re.findall(math_pattern, question)
|
192 |
+
if math_matches:
|
193 |
+
for match in math_matches:
|
194 |
+
if any(op in match for op in ['+', '-', '*', '/']):
|
195 |
+
calc_result = calculator(match.strip())
|
196 |
+
return f"The calculation result is: {calc_result}"
|
197 |
+
|
198 |
+
# Check if it needs web search
|
199 |
+
if any(word in question_lower for word in ['current', 'recent', 'latest', 'today', 'news', 'when', 'who', 'what']):
|
200 |
+
# Try Wikipedia first for factual questions
|
201 |
+
if any(word in question_lower for word in ['who is', 'what is', 'born', 'died', 'biography']):
|
202 |
+
wiki_result = wikipedia_search(question)
|
203 |
+
if "No Wikipedia results" not in wiki_result:
|
204 |
+
return wiki_result
|
205 |
+
|
206 |
+
# Fall back to web search
|
207 |
+
search_result = simple_search(question)
|
208 |
+
if "No results found" not in search_result:
|
209 |
+
return search_result
|
210 |
+
|
211 |
+
# For other questions, use the language model
|
212 |
+
prompt = f"""Question: {question}
|
213 |
+
|
214 |
+
Please provide a clear and accurate answer. If you're not sure about something, say so.
|
215 |
+
|
216 |
+
Answer:"""
|
217 |
+
|
218 |
+
response = self.model.generate(prompt, max_length=400)
|
219 |
+
|
220 |
+
# If the response is too short or generic, try to enhance it
|
221 |
+
if len(response.split()) < 5:
|
222 |
+
enhanced_prompt = f"""You are a helpful assistant. Answer this question with specific details:
|
223 |
+
|
224 |
+
{question}
|
225 |
+
|
226 |
+
Provide a comprehensive answer:"""
|
227 |
+
response = self.model.generate(enhanced_prompt, max_length=500)
|
228 |
+
|
229 |
+
return response.strip() if response.strip() else "I need more information to answer this question properly."
|
230 |
+
|
231 |
except Exception as e:
|
232 |
return f"Agent error: {e}"
|
233 |
|
|
|
255 |
return f"Error fetching questions: {e}", None
|
256 |
|
257 |
logs, answers = [], []
|
258 |
+
for i, item in enumerate(questions):
|
259 |
task_id = item.get("task_id")
|
260 |
question = item.get("question")
|
261 |
if not task_id or question is None:
|
262 |
continue
|
263 |
+
|
264 |
+
print(f"Processing question {i+1}/{len(questions)}: {task_id}")
|
265 |
ans = agent(question)
|
266 |
answers.append({"task_id": task_id, "submitted_answer": ans})
|
267 |
+
logs.append({"Task ID": task_id, "Question": question[:100] + "..." if len(question) > 100 else question, "Submitted Answer": ans[:200] + "..." if len(ans) > 200 else ans})
|
268 |
|
269 |
if not answers:
|
270 |
return "Agent produced no answers.", pd.DataFrame(logs)
|
|
|
287 |
# --- Gradio Interface ---
|
288 |
with gr.Blocks() as demo:
|
289 |
gr.Markdown("# GAIA Agent Evaluation Runner")
|
290 |
+
gr.Markdown("This agent uses HuggingFace models locally (no API calls) to answer GAIA benchmark questions.")
|
291 |
+
|
292 |
gr.LoginButton()
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
296 |
+
|
297 |
+
status_box = gr.Textbox(label="Status / Submission Result", lines=8, interactive=False)
|
298 |
result_table = gr.DataFrame(label="Questions & Agent Answers", wrap=True)
|
299 |
|
300 |
run_button.click(run_and_submit_all, outputs=[status_box, result_table])
|
301 |
|
302 |
if __name__ == "__main__":
|
303 |
print("Launching Gradio app...")
|
304 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
pandas
|
5 |
-
|
6 |
-
beautifulsoup4
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
transformers>=4.35.0
|
3 |
+
torch>=2.0.0
|
4 |
+
pandas>=1.5.0
|
5 |
+
requests>=2.28.0
|
6 |
+
beautifulsoup4>=4.11.0
|
7 |
+
wikipedia>=1.4.0
|
8 |
+
smolagents>=0.1.0
|
9 |
+
accelerate>=0.20.0
|
10 |
+
sentencepiece>=0.1.99
|