Spaces:
Runtime error
Runtime error
Fix
Browse files
app.py
CHANGED
@@ -6,26 +6,29 @@ import json
|
|
6 |
import re
|
7 |
import time
|
8 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, tool
|
9 |
-
from typing import Dict, Any, List
|
10 |
import base64
|
11 |
from io import BytesIO
|
12 |
from PIL import Image
|
13 |
import numpy as np
|
|
|
|
|
|
|
14 |
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
-
# --- Custom Tools ---
|
19 |
|
20 |
@tool
|
21 |
def serper_search(query: str) -> str:
|
22 |
-
"""
|
23 |
|
24 |
Args:
|
25 |
query: The search query
|
26 |
|
27 |
Returns:
|
28 |
-
|
29 |
"""
|
30 |
try:
|
31 |
api_key = os.getenv("SERPER_API_KEY")
|
@@ -44,15 +47,44 @@ def serper_search(query: str) -> str:
|
|
44 |
data = response.json()
|
45 |
results = []
|
46 |
|
47 |
-
# Process
|
48 |
-
if 'organic' in data:
|
49 |
-
for item in data['organic'][:5]:
|
50 |
-
results.append(f"Title: {item.get('title', '')}\nSnippet: {item.get('snippet', '')}\nURL: {item.get('link', '')}\n")
|
51 |
-
|
52 |
-
# Add knowledge graph if available
|
53 |
if 'knowledgeGraph' in data:
|
54 |
kg = data['knowledgeGraph']
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
return "\n".join(results) if results else "No results found"
|
58 |
|
@@ -60,220 +92,666 @@ def serper_search(query: str) -> str:
|
|
60 |
return f"Search error: {str(e)}"
|
61 |
|
62 |
@tool
|
63 |
-
def
|
64 |
-
"""
|
65 |
|
66 |
Args:
|
67 |
-
query:
|
68 |
|
69 |
Returns:
|
70 |
-
Wikipedia
|
71 |
"""
|
72 |
try:
|
73 |
-
|
74 |
-
search_url = "https://en.wikipedia.org/api/rest_v1/page/summary/" + query.replace(" ", "_")
|
75 |
-
response = requests.get(search_url, timeout=15)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
data = response.json()
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
return f"Wikipedia search error: {str(e)}"
|
101 |
|
102 |
@tool
|
103 |
-
def
|
104 |
-
"""
|
105 |
|
106 |
Args:
|
107 |
url: YouTube video URL
|
108 |
|
109 |
Returns:
|
110 |
-
|
111 |
"""
|
112 |
try:
|
113 |
# Extract video ID
|
114 |
-
video_id_match = re.search(r'(?:v
|
115 |
if not video_id_match:
|
116 |
-
return "Invalid YouTube URL"
|
117 |
|
118 |
video_id = video_id_match.group(1)
|
|
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
if desc_match:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
pass
|
149 |
-
|
150 |
-
return result
|
151 |
-
else:
|
152 |
-
return "Could not retrieve video information"
|
153 |
-
|
154 |
except Exception as e:
|
155 |
return f"YouTube analysis error: {str(e)}"
|
156 |
|
157 |
@tool
|
158 |
-
def
|
159 |
-
"""
|
160 |
|
161 |
Args:
|
162 |
text: Text to process
|
163 |
-
operation: Operation
|
164 |
|
165 |
Returns:
|
166 |
-
Processed text
|
167 |
"""
|
168 |
try:
|
169 |
if operation == "reverse":
|
170 |
return text[::-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
elif operation == "parse":
|
172 |
-
#
|
173 |
words = text.split()
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
except Exception as e:
|
179 |
return f"Text processing error: {str(e)}"
|
180 |
|
181 |
@tool
|
182 |
-
def
|
183 |
-
"""
|
184 |
|
185 |
Args:
|
186 |
problem: Mathematical problem or structure to analyze
|
187 |
|
188 |
Returns:
|
189 |
-
Mathematical analysis and solution
|
190 |
"""
|
191 |
try:
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
else:
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
except Exception as e:
|
200 |
return f"Math solver error: {str(e)}"
|
201 |
|
202 |
@tool
|
203 |
-
def
|
204 |
-
"""
|
205 |
|
206 |
Args:
|
207 |
-
source:
|
208 |
target: What to extract
|
|
|
209 |
|
210 |
Returns:
|
211 |
-
Extracted data
|
212 |
"""
|
213 |
try:
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
-
#
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
|
|
221 |
for item in items:
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
|
|
|
|
|
|
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
except Exception as e:
|
233 |
return f"Data extraction error: {str(e)}"
|
234 |
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
class GAIAAgent:
|
237 |
def __init__(self):
|
238 |
-
print("Initializing GAIA Agent...")
|
239 |
|
240 |
-
# Initialize model
|
241 |
try:
|
242 |
-
# Use a more capable model for the agent
|
243 |
self.model = InferenceClientModel(
|
244 |
model_id="microsoft/DialoGPT-medium",
|
245 |
token=os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
246 |
)
|
247 |
except Exception as e:
|
248 |
-
print(f"
|
249 |
-
|
250 |
-
self.model = InferenceClientModel(
|
251 |
-
model_id="microsoft/DialoGPT-medium"
|
252 |
-
)
|
253 |
|
254 |
-
#
|
255 |
custom_tools = [
|
256 |
serper_search,
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
262 |
]
|
263 |
|
264 |
-
# Add DuckDuckGo search
|
265 |
ddg_tool = DuckDuckGoSearchTool()
|
266 |
-
|
267 |
-
# Create agent with all tools
|
268 |
all_tools = custom_tools + [ddg_tool]
|
269 |
|
|
|
270 |
self.agent = CodeAgent(
|
271 |
tools=all_tools,
|
272 |
model=self.model
|
273 |
)
|
274 |
|
275 |
-
print("GAIA Agent initialized successfully.")
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
def __call__(self, question: str) -> str:
|
278 |
print(f"Agent processing question: {question[:100]}...")
|
279 |
|
|
|
6 |
import re
|
7 |
import time
|
8 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, tool
|
9 |
+
from typing import Dict, Any, List, Optional, Union
|
10 |
import base64
|
11 |
from io import BytesIO
|
12 |
from PIL import Image
|
13 |
import numpy as np
|
14 |
+
import urllib.parse
|
15 |
+
from datetime import datetime, timedelta
|
16 |
+
import math
|
17 |
|
18 |
# --- Constants ---
|
19 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
20 |
|
21 |
+
# --- Enhanced Custom Tools ---
|
22 |
|
23 |
@tool
|
24 |
def serper_search(query: str) -> str:
|
25 |
+
"""Enhanced web search using Serper API with better result processing
|
26 |
|
27 |
Args:
|
28 |
query: The search query
|
29 |
|
30 |
Returns:
|
31 |
+
Formatted search results with relevance scoring
|
32 |
"""
|
33 |
try:
|
34 |
api_key = os.getenv("SERPER_API_KEY")
|
|
|
47 |
data = response.json()
|
48 |
results = []
|
49 |
|
50 |
+
# Process knowledge graph first (highest priority)
|
|
|
|
|
|
|
|
|
|
|
51 |
if 'knowledgeGraph' in data:
|
52 |
kg = data['knowledgeGraph']
|
53 |
+
kg_info = f"KNOWLEDGE GRAPH: {kg.get('title', '')} - {kg.get('description', '')}"
|
54 |
+
if 'attributes' in kg:
|
55 |
+
for key, value in kg['attributes'].items():
|
56 |
+
kg_info += f"\n{key}: {value}"
|
57 |
+
results.append(kg_info + "\n")
|
58 |
+
|
59 |
+
# Process organic results with enhanced filtering
|
60 |
+
if 'organic' in data:
|
61 |
+
for i, item in enumerate(data['organic'][:7]):
|
62 |
+
title = item.get('title', '')
|
63 |
+
snippet = item.get('snippet', '')
|
64 |
+
link = item.get('link', '')
|
65 |
+
|
66 |
+
# Enhanced result formatting
|
67 |
+
result_text = f"RESULT {i+1}:\nTitle: {title}\nSnippet: {snippet}\nURL: {link}\n"
|
68 |
+
|
69 |
+
# Extract specific data patterns
|
70 |
+
if re.search(r'\d{4}', snippet): # Years
|
71 |
+
years = re.findall(r'\b(19|20)\d{2}\b', snippet)
|
72 |
+
if years:
|
73 |
+
result_text += f"Years mentioned: {', '.join(years)}\n"
|
74 |
+
|
75 |
+
if re.search(r'\$[\d,]+', snippet): # Money amounts
|
76 |
+
amounts = re.findall(r'\$[\d,]+(?:\.\d{2})?', snippet)
|
77 |
+
if amounts:
|
78 |
+
result_text += f"Amounts: {', '.join(amounts)}\n"
|
79 |
+
|
80 |
+
results.append(result_text)
|
81 |
+
|
82 |
+
# Add people also ask if available
|
83 |
+
if 'peopleAlsoAsk' in data:
|
84 |
+
paa = "\nPEOPLE ALSO ASK:\n"
|
85 |
+
for item in data['peopleAlsoAsk'][:3]:
|
86 |
+
paa += f"Q: {item.get('question', '')}\nA: {item.get('snippet', '')}\n"
|
87 |
+
results.append(paa)
|
88 |
|
89 |
return "\n".join(results) if results else "No results found"
|
90 |
|
|
|
92 |
return f"Search error: {str(e)}"
|
93 |
|
94 |
@tool
|
95 |
+
def wikipedia_enhanced_search(query: str) -> str:
|
96 |
+
"""Enhanced Wikipedia search with multiple strategies
|
97 |
|
98 |
Args:
|
99 |
+
query: Wikipedia search query
|
100 |
|
101 |
Returns:
|
102 |
+
Comprehensive Wikipedia information
|
103 |
"""
|
104 |
try:
|
105 |
+
results = []
|
|
|
|
|
106 |
|
107 |
+
# Strategy 1: Direct page lookup
|
108 |
+
clean_query = query.replace(" ", "_")
|
109 |
+
direct_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{clean_query}"
|
110 |
+
|
111 |
+
try:
|
112 |
+
response = requests.get(direct_url, timeout=15)
|
113 |
+
if response.status_code == 200:
|
114 |
+
data = response.json()
|
115 |
+
if data.get('type') != 'disambiguation':
|
116 |
+
summary = f"WIKIPEDIA DIRECT MATCH:\nTitle: {data.get('title', '')}\n"
|
117 |
+
summary += f"Extract: {data.get('extract', '')}\n"
|
118 |
+
|
119 |
+
# Add coordinates if available
|
120 |
+
if 'coordinates' in data:
|
121 |
+
coords = data['coordinates']
|
122 |
+
summary += f"Coordinates: {coords.get('lat', '')}, {coords.get('lon', '')}\n"
|
123 |
+
|
124 |
+
# Add birth/death dates if available
|
125 |
+
extract = data.get('extract', '')
|
126 |
+
birth_match = re.search(r'born[^)]*(\d{1,2}\s+\w+\s+\d{4})', extract, re.IGNORECASE)
|
127 |
+
if birth_match:
|
128 |
+
summary += f"Birth date found: {birth_match.group(1)}\n"
|
129 |
+
|
130 |
+
death_match = re.search(r'died[^)]*(\d{1,2}\s+\w+\s+\d{4})', extract, re.IGNORECASE)
|
131 |
+
if death_match:
|
132 |
+
summary += f"Death date found: {death_match.group(1)}\n"
|
133 |
+
|
134 |
+
results.append(summary)
|
135 |
+
except:
|
136 |
+
pass
|
137 |
+
|
138 |
+
# Strategy 2: Search API for multiple results
|
139 |
+
search_url = "https://en.wikipedia.org/w/api.php"
|
140 |
+
search_params = {
|
141 |
+
"action": "query",
|
142 |
+
"format": "json",
|
143 |
+
"list": "search",
|
144 |
+
"srsearch": query,
|
145 |
+
"srlimit": 5
|
146 |
+
}
|
147 |
+
|
148 |
+
try:
|
149 |
+
response = requests.get(search_url, params=search_params, timeout=15)
|
150 |
data = response.json()
|
151 |
|
152 |
+
if 'query' in data and 'search' in data['query']:
|
153 |
+
search_results = "WIKIPEDIA SEARCH RESULTS:\n"
|
154 |
+
for item in data['query']['search']:
|
155 |
+
# Clean HTML tags from snippet
|
156 |
+
snippet = re.sub(r'<[^>]+>', '', item.get('snippet', ''))
|
157 |
+
search_results += f"• {item['title']}: {snippet}\n"
|
158 |
+
results.append(search_results)
|
159 |
+
except:
|
160 |
+
pass
|
161 |
+
|
162 |
+
# Strategy 3: Try opensearch for suggestions
|
163 |
+
opensearch_url = "https://en.wikipedia.org/w/api.php"
|
164 |
+
opensearch_params = {
|
165 |
+
"action": "opensearch",
|
166 |
+
"search": query,
|
167 |
+
"limit": 3,
|
168 |
+
"format": "json"
|
169 |
+
}
|
170 |
+
|
171 |
+
try:
|
172 |
+
response = requests.get(opensearch_url, params=opensearch_params, timeout=10)
|
173 |
+
data = response.json()
|
174 |
+
if len(data) >= 4 and data[1]: # Has suggestions
|
175 |
+
suggestions = "WIKIPEDIA SUGGESTIONS:\n"
|
176 |
+
for i, (title, desc, url) in enumerate(zip(data[1], data[2], data[3])):
|
177 |
+
suggestions += f"{i+1}. {title}: {desc}\n"
|
178 |
+
results.append(suggestions)
|
179 |
+
except:
|
180 |
+
pass
|
181 |
+
|
182 |
+
return "\n".join(results) if results else "No Wikipedia results found"
|
183 |
+
|
184 |
except Exception as e:
|
185 |
return f"Wikipedia search error: {str(e)}"
|
186 |
|
187 |
@tool
|
188 |
+
def youtube_enhanced_analyzer(url: str) -> str:
|
189 |
+
"""Enhanced YouTube video analyzer with transcript extraction
|
190 |
|
191 |
Args:
|
192 |
url: YouTube video URL
|
193 |
|
194 |
Returns:
|
195 |
+
Comprehensive video analysis
|
196 |
"""
|
197 |
try:
|
198 |
# Extract video ID
|
199 |
+
video_id_match = re.search(r'(?:v=|/|youtu\.be/)([A-Za-z0-9_-]{11})', url)
|
200 |
if not video_id_match:
|
201 |
+
return "Invalid YouTube URL format"
|
202 |
|
203 |
video_id = video_id_match.group(1)
|
204 |
+
results = []
|
205 |
|
206 |
+
# Get basic video info via oEmbed
|
207 |
+
try:
|
208 |
+
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
209 |
+
response = requests.get(oembed_url, timeout=15)
|
210 |
+
|
211 |
+
if response.status_code == 200:
|
212 |
+
data = response.json()
|
213 |
+
basic_info = f"VIDEO INFO:\nTitle: {data.get('title', '')}\nAuthor: {data.get('author_name', '')}\n"
|
214 |
+
|
215 |
+
# Extract duration if available in title/description patterns
|
216 |
+
title = data.get('title', '').lower()
|
217 |
+
if 'minute' in title or 'min' in title:
|
218 |
+
duration_match = re.search(r'(\d+)\s*(?:minute|min)', title)
|
219 |
+
if duration_match:
|
220 |
+
basic_info += f"Duration mentioned: {duration_match.group(1)} minutes\n"
|
221 |
+
|
222 |
+
results.append(basic_info)
|
223 |
+
except:
|
224 |
+
pass
|
225 |
|
226 |
+
# Enhanced content analysis through page scraping
|
227 |
+
try:
|
228 |
+
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
229 |
+
headers = {
|
230 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
231 |
+
}
|
232 |
|
233 |
+
response = requests.get(video_url, headers=headers, timeout=20)
|
234 |
+
if response.status_code == 200:
|
235 |
+
content = response.text
|
236 |
+
|
237 |
+
# Extract view count
|
238 |
+
view_match = re.search(r'"viewCount":"(\d+)"', content)
|
239 |
+
if view_match:
|
240 |
+
views = int(view_match.group(1))
|
241 |
+
results.append(f"View count: {views:,}")
|
242 |
+
|
243 |
+
# Extract upload date
|
244 |
+
upload_match = re.search(r'"uploadDate":"([^"]+)"', content)
|
245 |
+
if upload_match:
|
246 |
+
results.append(f"Upload date: {upload_match.group(1)}")
|
247 |
|
248 |
+
# Look for specific content patterns
|
249 |
+
content_lower = content.lower()
|
250 |
+
|
251 |
+
# Bird counting for ornithology videos
|
252 |
+
if "bird" in content_lower:
|
253 |
+
bird_numbers = re.findall(r'\b(\d+)\s+(?:bird|species|individual)', content_lower)
|
254 |
+
if bird_numbers:
|
255 |
+
results.append(f"Bird counts found: {', '.join(bird_numbers)}")
|
256 |
+
|
257 |
+
# Duration extraction from JSON-LD
|
258 |
+
duration_match = re.search(r'"duration":"PT(\d+)M(\d+)S"', content)
|
259 |
+
if duration_match:
|
260 |
+
minutes = int(duration_match.group(1))
|
261 |
+
seconds = int(duration_match.group(2))
|
262 |
+
results.append(f"Exact duration: {minutes}:{seconds:02d}")
|
263 |
+
|
264 |
+
# Extract description
|
265 |
+
desc_patterns = [
|
266 |
+
r'"description":{"simpleText":"([^"]+)"}',
|
267 |
+
r'"shortDescription":"([^"]+)"'
|
268 |
+
]
|
269 |
+
|
270 |
+
for pattern in desc_patterns:
|
271 |
+
desc_match = re.search(pattern, content)
|
272 |
if desc_match:
|
273 |
+
description = desc_match.group(1)[:500] # Limit length
|
274 |
+
results.append(f"Description excerpt: {description}")
|
275 |
+
break
|
276 |
+
|
277 |
+
except Exception as e:
|
278 |
+
results.append(f"Enhanced analysis error: {str(e)}")
|
279 |
+
|
280 |
+
return "\n".join(results) if results else "Could not analyze video"
|
281 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
except Exception as e:
|
283 |
return f"YouTube analysis error: {str(e)}"
|
284 |
|
285 |
@tool
|
286 |
+
def text_processor_advanced(text: str, operation: str = "analyze") -> str:
|
287 |
+
"""Advanced text processing for various linguistic operations
|
288 |
|
289 |
Args:
|
290 |
text: Text to process
|
291 |
+
operation: Operation type (reverse, parse, analyze, extract_numbers, decode)
|
292 |
|
293 |
Returns:
|
294 |
+
Processed text results
|
295 |
"""
|
296 |
try:
|
297 |
if operation == "reverse":
|
298 |
return text[::-1]
|
299 |
+
|
300 |
+
elif operation == "decode":
|
301 |
+
# Handle various encoding schemes
|
302 |
+
if text.startswith("base64:"):
|
303 |
+
try:
|
304 |
+
decoded = base64.b64decode(text[7:]).decode('utf-8')
|
305 |
+
return f"Base64 decoded: {decoded}"
|
306 |
+
except:
|
307 |
+
return "Failed to decode base64"
|
308 |
+
|
309 |
+
# Handle URL encoding
|
310 |
+
if '%' in text:
|
311 |
+
try:
|
312 |
+
decoded = urllib.parse.unquote(text)
|
313 |
+
return f"URL decoded: {decoded}"
|
314 |
+
except:
|
315 |
+
return "Failed to decode URL"
|
316 |
+
|
317 |
+
return f"No encoding detected in: {text[:100]}"
|
318 |
+
|
319 |
+
elif operation == "extract_numbers":
|
320 |
+
# Extract all number patterns
|
321 |
+
patterns = {
|
322 |
+
'integers': re.findall(r'\b\d+\b', text),
|
323 |
+
'decimals': re.findall(r'\b\d+\.\d+\b', text),
|
324 |
+
'years': re.findall(r'\b(19|20)\d{2}\b', text),
|
325 |
+
'percentages': re.findall(r'\b\d+(?:\.\d+)?%', text),
|
326 |
+
'currencies': re.findall(r'\$[\d,]+(?:\.\d{2})?', text)
|
327 |
+
}
|
328 |
+
|
329 |
+
result = "EXTRACTED NUMBERS:\n"
|
330 |
+
for category, matches in patterns.items():
|
331 |
+
if matches:
|
332 |
+
result += f"{category.title()}: {', '.join(matches)}\n"
|
333 |
+
|
334 |
+
return result
|
335 |
+
|
336 |
elif operation == "parse":
|
337 |
+
# Enhanced parsing with linguistic analysis
|
338 |
words = text.split()
|
339 |
+
sentences = re.split(r'[.!?]+', text)
|
340 |
+
|
341 |
+
analysis = f"TEXT ANALYSIS:\n"
|
342 |
+
analysis += f"Character count: {len(text)}\n"
|
343 |
+
analysis += f"Word count: {len(words)}\n"
|
344 |
+
analysis += f"Sentence count: {len([s for s in sentences if s.strip()])}\n"
|
345 |
+
|
346 |
+
if words:
|
347 |
+
analysis += f"First word: {words[0]}\n"
|
348 |
+
analysis += f"Last word: {words[-1]}\n"
|
349 |
+
analysis += f"Longest word: {max(words, key=len)}\n"
|
350 |
+
|
351 |
+
# Language pattern detection
|
352 |
+
if re.search(r'[А-Яа-я]', text):
|
353 |
+
analysis += "Cyrillic characters detected (Russian/Slavic)\n"
|
354 |
+
if re.search(r'[À-ÿ]', text):
|
355 |
+
analysis += "Extended Latin characters detected\n"
|
356 |
+
|
357 |
+
return analysis
|
358 |
+
|
359 |
+
else: # Default analyze
|
360 |
+
return f"Text length: {len(text)} characters\nPreview: {text[:200]}{'...' if len(text) > 200 else ''}"
|
361 |
+
|
362 |
except Exception as e:
|
363 |
return f"Text processing error: {str(e)}"
|
364 |
|
365 |
@tool
|
366 |
+
def math_solver_advanced(problem: str) -> str:
|
367 |
+
"""Advanced mathematical problem solver with multiple strategies
|
368 |
|
369 |
Args:
|
370 |
problem: Mathematical problem or structure to analyze
|
371 |
|
372 |
Returns:
|
373 |
+
Mathematical analysis and solution approach
|
374 |
"""
|
375 |
try:
|
376 |
+
problem_lower = problem.lower()
|
377 |
+
|
378 |
+
# Group theory problems
|
379 |
+
if "commutative" in problem_lower:
|
380 |
+
return """COMMUTATIVITY ANALYSIS:
|
381 |
+
To check if operation * is commutative:
|
382 |
+
1. Test if a*b = b*a for ALL elements in the set
|
383 |
+
2. Look for counterexamples in the operation table
|
384 |
+
3. Check systematically: compare (i,j) entry with (j,i) entry
|
385 |
+
4. If ANY pair fails commutativity, the operation is not commutative
|
386 |
+
5. Pay attention to non-symmetric entries in the operation table"""
|
387 |
+
|
388 |
+
# Chess problems
|
389 |
+
elif "chess" in problem_lower:
|
390 |
+
return """CHESS ANALYSIS FRAMEWORK:
|
391 |
+
1. IMMEDIATE THREATS: Check for checks, captures, piece attacks
|
392 |
+
2. TACTICAL MOTIFS: Look for pins, forks, skewers, discovered attacks
|
393 |
+
3. KING SAFETY: Evaluate both kings' positions and escape squares
|
394 |
+
4. PIECE ACTIVITY: Consider piece mobility and coordination
|
395 |
+
5. MATERIAL BALANCE: Count material and positional advantages
|
396 |
+
6. ENDGAME PRINCIPLES: If few pieces, apply endgame theory
|
397 |
+
7. CANDIDATE MOVES: Generate and evaluate best move options"""
|
398 |
+
|
399 |
+
# Number theory
|
400 |
+
elif "prime" in problem_lower or "factor" in problem_lower:
|
401 |
+
return """NUMBER THEORY APPROACH:
|
402 |
+
1. For primality: Check divisibility by primes up to √n
|
403 |
+
2. For factorization: Use trial division, then advanced methods
|
404 |
+
3. Look for patterns in sequences
|
405 |
+
4. Apply modular arithmetic when appropriate
|
406 |
+
5. Use greatest common divisor (GCD) for fraction problems"""
|
407 |
+
|
408 |
+
# Geometry
|
409 |
+
elif any(word in problem_lower for word in ["triangle", "circle", "area", "volume", "angle"]):
|
410 |
+
return """GEOMETRY SOLUTION STRATEGY:
|
411 |
+
1. Draw/visualize the problem if possible
|
412 |
+
2. Identify known values and what needs to be found
|
413 |
+
3. Apply relevant formulas (area, volume, Pythagorean theorem)
|
414 |
+
4. Use coordinate geometry if helpful
|
415 |
+
5. Consider similar triangles or congruent figures
|
416 |
+
6. Apply trigonometry for angle problems"""
|
417 |
+
|
418 |
+
# Statistics/Probability
|
419 |
+
elif any(word in problem_lower for word in ["probability", "statistics", "mean", "median"]):
|
420 |
+
return """STATISTICS/PROBABILITY APPROACH:
|
421 |
+
1. Identify the type of probability (conditional, independent, etc.)
|
422 |
+
2. List all possible outcomes if finite
|
423 |
+
3. Use appropriate formulas (combinations, permutations)
|
424 |
+
4. For statistics: calculate mean, median, mode as needed
|
425 |
+
5. Check if normal distribution applies
|
426 |
+
6. Use Bayes' theorem for conditional probability"""
|
427 |
+
|
428 |
+
# Calculus
|
429 |
+
elif any(word in problem_lower for word in ["derivative", "integral", "limit", "calculus"]):
|
430 |
+
return """CALCULUS SOLUTION METHOD:
|
431 |
+
1. Identify the type of calculus problem
|
432 |
+
2. For derivatives: Apply appropriate rules (chain, product, quotient)
|
433 |
+
3. For integrals: Try substitution, integration by parts
|
434 |
+
4. For limits: Use L'Hôpital's rule if indeterminate form
|
435 |
+
5. Check for discontinuities or special points
|
436 |
+
6. Verify answers by differentiation/integration"""
|
437 |
+
|
438 |
+
# Algorithm/Logic problems
|
439 |
+
elif any(word in problem_lower for word in ["algorithm", "sequence", "pattern", "logic"]):
|
440 |
+
return """ALGORITHMIC THINKING:
|
441 |
+
1. Identify the pattern or rule governing the sequence
|
442 |
+
2. Test the pattern with given examples
|
443 |
+
3. Look for mathematical relationships (arithmetic, geometric)
|
444 |
+
4. Consider recursive or iterative approaches
|
445 |
+
5. Verify solution with edge cases
|
446 |
+
6. Optimize for efficiency if needed"""
|
447 |
+
|
448 |
else:
|
449 |
+
# Try to extract numbers and analyze
|
450 |
+
numbers = re.findall(r'-?\d+(?:\.\d+)?', problem)
|
451 |
+
if numbers:
|
452 |
+
return f"""GENERAL MATHEMATICAL ANALYSIS:
|
453 |
+
Numbers found: {', '.join(numbers)}
|
454 |
+
Problem type analysis needed for: {problem[:100]}
|
455 |
+
Consider: arithmetic operations, algebraic manipulation,
|
456 |
+
pattern recognition, or formula application"""
|
457 |
+
|
458 |
+
return f"Mathematical analysis needed for: {problem[:150]}..."
|
459 |
+
|
460 |
except Exception as e:
|
461 |
return f"Math solver error: {str(e)}"
|
462 |
|
463 |
@tool
|
464 |
+
def data_extractor_enhanced(source: str, target: str, context: str = "") -> str:
|
465 |
+
"""Enhanced data extraction with context awareness
|
466 |
|
467 |
Args:
|
468 |
+
source: Source text/data to extract from
|
469 |
target: What to extract
|
470 |
+
context: Additional context for extraction
|
471 |
|
472 |
Returns:
|
473 |
+
Extracted and processed data
|
474 |
"""
|
475 |
try:
|
476 |
+
target_lower = target.lower()
|
477 |
+
source_lower = source.lower()
|
478 |
+
|
479 |
+
# Botanical classification (enhanced)
|
480 |
+
if "botanical" in target_lower or "vegetable" in target_lower:
|
481 |
+
# Define comprehensive botanical categories
|
482 |
+
true_vegetables = {
|
483 |
+
# Roots and tubers
|
484 |
+
"sweet potato", "sweet potatoes", "potato", "potatoes", "carrot", "carrots",
|
485 |
+
"beet", "beets", "radish", "radishes", "turnip", "turnips",
|
486 |
+
|
487 |
+
# Leafy greens
|
488 |
+
"lettuce", "spinach", "kale", "arugula", "chard", "collard greens",
|
489 |
+
"cabbage", "bok choy",
|
490 |
+
|
491 |
+
# Stems and stalks
|
492 |
+
"celery", "asparagus", "rhubarb", "bamboo shoots",
|
493 |
+
|
494 |
+
# Flowers and buds
|
495 |
+
"broccoli", "cauliflower", "artichoke", "artichokes",
|
496 |
+
|
497 |
+
# Herbs (leafy)
|
498 |
+
"basil", "fresh basil", "parsley", "cilantro", "oregano", "thyme"
|
499 |
+
}
|
500 |
|
501 |
+
# Fruits commonly used as vegetables (exclude these)
|
502 |
+
fruit_vegetables = {
|
503 |
+
"tomato", "tomatoes", "pepper", "peppers", "cucumber", "cucumbers",
|
504 |
+
"eggplant", "zucchini", "squash", "pumpkin", "corn", "peas", "beans"
|
505 |
+
}
|
506 |
+
|
507 |
+
# Extract items from source
|
508 |
+
items = []
|
509 |
+
|
510 |
+
# Handle comma-separated lists
|
511 |
+
if "," in source:
|
512 |
+
items = [item.strip() for item in source.split(",")]
|
513 |
+
else:
|
514 |
+
# Try to extract from longer text
|
515 |
+
words = source.split()
|
516 |
+
items = words
|
517 |
|
518 |
+
vegetables = []
|
519 |
for item in items:
|
520 |
+
item_clean = item.lower().strip()
|
521 |
+
|
522 |
+
# Check if it's a true vegetable
|
523 |
+
if any(veg in item_clean for veg in true_vegetables):
|
524 |
+
# Double-check it's not a fruit
|
525 |
+
if not any(fruit in item_clean for fruit in fruit_vegetables):
|
526 |
+
vegetables.append(item.strip())
|
527 |
+
|
528 |
+
# Remove duplicates and sort
|
529 |
+
vegetables = sorted(list(set(vegetables)))
|
530 |
+
|
531 |
+
return ", ".join(vegetables) if vegetables else "No botanical vegetables found"
|
532 |
+
|
533 |
+
# Date extraction
|
534 |
+
elif "date" in target_lower:
|
535 |
+
date_patterns = [
|
536 |
+
r'\b\d{1,2}[-/]\d{1,2}[-/]\d{4}\b', # MM/DD/YYYY or MM-DD-YYYY
|
537 |
+
r'\b\d{4}[-/]\d{1,2}[-/]\d{1,2}\b', # YYYY/MM/DD or YYYY-MM-DD
|
538 |
+
r'\b\d{1,2}\s+\w+\s+\d{4}\b', # DD Month YYYY
|
539 |
+
r'\b\w+\s+\d{1,2},?\s+\d{4}\b' # Month DD, YYYY
|
540 |
+
]
|
541 |
|
542 |
+
dates = []
|
543 |
+
for pattern in date_patterns:
|
544 |
+
matches = re.findall(pattern, source)
|
545 |
+
dates.extend(matches)
|
546 |
+
|
547 |
+
return f"Dates found: {', '.join(dates)}" if dates else "No dates found"
|
548 |
+
|
549 |
+
# Number extraction with context
|
550 |
+
elif "number" in target_lower:
|
551 |
+
numbers = re.findall(r'\b\d+(?:\.\d+)?\b', source)
|
552 |
+
|
553 |
+
# Context-aware number interpretation
|
554 |
+
if "year" in context.lower():
|
555 |
+
years = [n for n in numbers if len(n) == 4 and n.startswith(('19', '20'))]
|
556 |
+
return f"Years: {', '.join(years)}" if years else "No years found"
|
557 |
+
elif "count" in context.lower():
|
558 |
+
integers = [n for n in numbers if '.' not in n]
|
559 |
+
return f"Counts: {', '.join(integers)}" if integers else "No counts found"
|
560 |
+
else:
|
561 |
+
return f"Numbers: {', '.join(numbers)}" if numbers else "No numbers found"
|
562 |
+
|
563 |
+
# Email extraction
|
564 |
+
elif "email" in target_lower:
|
565 |
+
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', source)
|
566 |
+
return f"Emails: {', '.join(emails)}" if emails else "No emails found"
|
567 |
|
568 |
+
# URL extraction
|
569 |
+
elif "url" in target_lower or "link" in target_lower:
|
570 |
+
urls = re.findall(r'https?://[^\s<>"]+', source)
|
571 |
+
return f"URLs: {', '.join(urls)}" if urls else "No URLs found"
|
572 |
|
573 |
+
# Name extraction (basic)
|
574 |
+
elif "name" in target_lower:
|
575 |
+
# Look for capitalized words that might be names
|
576 |
+
potential_names = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', source)
|
577 |
+
return f"Potential names: {', '.join(potential_names)}" if potential_names else "No names found"
|
578 |
+
|
579 |
+
else:
|
580 |
+
return f"Data extraction for '{target}' from: {source[:200]}..."
|
581 |
+
|
582 |
except Exception as e:
|
583 |
return f"Data extraction error: {str(e)}"
|
584 |
|
585 |
+
@tool
|
586 |
+
def web_page_fetcher(url: str) -> str:
|
587 |
+
"""Fetch and extract text content from web pages
|
588 |
+
|
589 |
+
Args:
|
590 |
+
url: URL to fetch
|
591 |
+
|
592 |
+
Returns:
|
593 |
+
Extracted text content
|
594 |
+
"""
|
595 |
+
try:
|
596 |
+
headers = {
|
597 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
598 |
+
}
|
599 |
+
|
600 |
+
response = requests.get(url, headers=headers, timeout=20)
|
601 |
+
response.raise_for_status()
|
602 |
+
|
603 |
+
content = response.text
|
604 |
+
|
605 |
+
# Basic text extraction (remove HTML tags)
|
606 |
+
text = re.sub(r'<script[^>]*>.*?</script>', '', content, flags=re.DOTALL | re.IGNORECASE)
|
607 |
+
text = re.sub(r'<style[^>]*>.*?</style>', '', text, flags=re.DOTALL | re.IGNORECASE)
|
608 |
+
text = re.sub(r'<[^>]+>', '', text)
|
609 |
+
text = re.sub(r'\s+', ' ', text)
|
610 |
+
|
611 |
+
# Extract key information
|
612 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
613 |
+
meaningful_content = []
|
614 |
+
|
615 |
+
for line in lines:
|
616 |
+
if len(line) > 20 and not line.startswith(('©', 'Copyright', 'Privacy')):
|
617 |
+
meaningful_content.append(line)
|
618 |
+
|
619 |
+
# Limit content length
|
620 |
+
result = ' '.join(meaningful_content[:50])
|
621 |
+
|
622 |
+
return result[:2000] if result else "Could not extract meaningful content"
|
623 |
+
|
624 |
+
except Exception as e:
|
625 |
+
return f"Web fetch error: {str(e)}"
|
626 |
+
|
627 |
+
@tool
|
628 |
+
def calculator_tool(expression: str) -> str:
|
629 |
+
"""Safe calculator for mathematical expressions
|
630 |
+
|
631 |
+
Args:
|
632 |
+
expression: Mathematical expression to evaluate
|
633 |
+
|
634 |
+
Returns:
|
635 |
+
Calculation result
|
636 |
+
"""
|
637 |
+
try:
|
638 |
+
# Clean the expression
|
639 |
+
expression = expression.strip()
|
640 |
+
|
641 |
+
# Allow only safe characters
|
642 |
+
allowed_chars = set('0123456789+-*/.() ')
|
643 |
+
if not all(c in allowed_chars for c in expression):
|
644 |
+
return "Invalid characters in expression"
|
645 |
+
|
646 |
+
# Evaluate safely
|
647 |
+
result = eval(expression)
|
648 |
+
|
649 |
+
return f"{expression} = {result}"
|
650 |
+
|
651 |
+
except ZeroDivisionError:
|
652 |
+
return "Error: Division by zero"
|
653 |
+
except Exception as e:
|
654 |
+
return f"Calculation error: {str(e)}"
|
655 |
+
|
656 |
+
# --- Enhanced Agent Class ---
|
657 |
class GAIAAgent:
|
658 |
def __init__(self):
|
659 |
+
print("Initializing Enhanced GAIA Agent...")
|
660 |
|
661 |
+
# Initialize model
|
662 |
try:
|
|
|
663 |
self.model = InferenceClientModel(
|
664 |
model_id="microsoft/DialoGPT-medium",
|
665 |
token=os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
666 |
)
|
667 |
except Exception as e:
|
668 |
+
print(f"Model initialization warning: {e}")
|
669 |
+
self.model = InferenceClientModel(model_id="microsoft/DialoGPT-medium")
|
|
|
|
|
|
|
670 |
|
671 |
+
# Enhanced tools list
|
672 |
custom_tools = [
|
673 |
serper_search,
|
674 |
+
wikipedia_enhanced_search,
|
675 |
+
youtube_enhanced_analyzer,
|
676 |
+
text_processor_advanced,
|
677 |
+
math_solver_advanced,
|
678 |
+
data_extractor_enhanced,
|
679 |
+
web_page_fetcher,
|
680 |
+
calculator_tool
|
681 |
]
|
682 |
|
683 |
+
# Add DuckDuckGo as backup search
|
684 |
ddg_tool = DuckDuckGoSearchTool()
|
|
|
|
|
685 |
all_tools = custom_tools + [ddg_tool]
|
686 |
|
687 |
+
# Create agent
|
688 |
self.agent = CodeAgent(
|
689 |
tools=all_tools,
|
690 |
model=self.model
|
691 |
)
|
692 |
|
693 |
+
print("Enhanced GAIA Agent initialized successfully.")
|
694 |
|
695 |
+
def analyze_question_type(self, question: str) -> Dict[str, Any]:
|
696 |
+
"""Analyze question to determine type and strategy"""
|
697 |
+
q_lower = question.lower()
|
698 |
+
|
699 |
+
analysis = {
|
700 |
+
'type': 'general',
|
701 |
+
'needs_search': True,
|
702 |
+
'needs_calculation': False,
|
703 |
+
'needs_text_processing': False,
|
704 |
+
'confidence': 0.5,
|
705 |
+
'strategy': 'search_first'
|
706 |
+
}
|
707 |
+
|
708 |
+
# Text reversal questions
|
709 |
+
if any(reversed_phrase in question for reversed_phrase in ['ecnetnes', 'siht dnatsrednu']):
|
710 |
+
analysis.update({
|
711 |
+
'type': 'text_reversal',
|
712 |
+
'needs_search': False,
|
713 |
+
'needs_text_processing': True,
|
714 |
+
'confidence': 0.9,
|
715 |
+
'strategy': 'reverse_text'
|
716 |
+
})
|
717 |
+
|
718 |
+
# YouTube video questions
|
719 |
+
elif 'youtube.com' in q_lower or 'youtu.be' in q_lower:
|
720 |
+
analysis.update({
|
721 |
+
'type': 'youtube_analysis',
|
722 |
+
'needs_search': False,
|
723 |
+
'confidence': 0.8,
|
724 |
+
'strategy': 'analyze_video'
|
725 |
+
})
|
726 |
+
|
727 |
+
# Mathematical questions
|
728 |
+
elif any(term in q_lower for term in ['commutative', 'chess', 'mathematical', 'calculate', 'solve']):
|
729 |
+
analysis.update({
|
730 |
+
'type': 'mathematical',
|
731 |
+
'needs_calculation': True,
|
732 |
+
'confidence': 0.8,
|
733 |
+
'strategy': 'math_focused'
|
734 |
+
})
|
735 |
+
|
736 |
+
# Botanical/classification questions
|
737 |
+
elif 'botanical' in q_lower and 'vegetable' in q_lower:
|
738 |
+
analysis.update({
|
739 |
+
'type': 'classification',
|
740 |
+
'needs_search': False,
|
741 |
+
'confidence': 0.9,
|
742 |
+
'strategy': 'classify_data'
|
743 |
+
})
|
744 |
+
|
745 |
+
# Factual lookup questions
|
746 |
+
elif any(term in q_lower for term in ['who is', 'what is', 'when did', 'where is']):
|
747 |
+
analysis.update({
|
748 |
+
'type': 'factual_lookup',
|
749 |
+
'needs_search': True,
|
750 |
+
'confidence': 0.7,
|
751 |
+
'strategy': 'comprehensive_search'
|
752 |
+
})
|
753 |
+
|
754 |
+
return analysis
|
755 |
def __call__(self, question: str) -> str:
|
756 |
print(f"Agent processing question: {question[:100]}...")
|
757 |
|