Spaces:
Sleeping
Sleeping
Merge pull request #2 from langtech-bsc/multithreading-and-optimizations
Browse files- translate_docx.py +42 -28
translate_docx.py
CHANGED
@@ -3,8 +3,6 @@ import json
|
|
3 |
import requests
|
4 |
import tqdm
|
5 |
import os
|
6 |
-
import string
|
7 |
-
from collections import defaultdict
|
8 |
|
9 |
from docx import Document
|
10 |
from docx.text.hyperlink import Hyperlink
|
@@ -16,7 +14,6 @@ nltk.download('punkt')
|
|
16 |
nltk.download('punkt_tab')
|
17 |
|
18 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
19 |
-
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
20 |
|
21 |
from subprocess import Popen, PIPE
|
22 |
|
@@ -59,12 +56,15 @@ class Aligner():
|
|
59 |
fastalign_bin = "./fast_align"
|
60 |
atools_bin = "./atools"
|
61 |
|
62 |
-
self.
|
63 |
-
x: f'{fastalign_bin} -i {x} -d -T {fwd_T} -m {fwd_m} -f {forward_params_path} > {self.forward_alignment_file_path}'
|
64 |
-
self.reverse_command = lambda \
|
65 |
-
x: f'{fastalign_bin} -i {x} -d -T {rev_T} -m {rev_m} -f {reverse_params_path} -r > {self.reverse_alignment_file_path}'
|
66 |
|
67 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def __simplify_alignment_file(self, file):
|
70 |
with fileinput.FileInput(file, inplace=True, backup='.bak') as f:
|
@@ -82,20 +82,28 @@ class Aligner():
|
|
82 |
T = line.split()[-1]
|
83 |
return T, m
|
84 |
|
85 |
-
def align(self,
|
|
|
|
|
|
|
|
|
|
|
86 |
# generate forward alignment
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
# for some reason the output file contains more information than needed, remove it
|
94 |
self.__simplify_alignment_file(self.forward_alignment_file_path)
|
95 |
self.__simplify_alignment_file(self.reverse_alignment_file_path)
|
96 |
|
97 |
# generate symmetrical alignment
|
98 |
-
process = Popen(self.symmetric_command,
|
99 |
process.wait()
|
100 |
|
101 |
# get final alignments and format them
|
@@ -180,8 +188,6 @@ def generate_alignments(original_paragraphs_with_runs, translated_paragraphs, al
|
|
180 |
for f in os.listdir(temp_folder):
|
181 |
os.remove(os.path.join(temp_folder, f))
|
182 |
|
183 |
-
temp_file_path = os.path.join(temp_folder, "tokenized_sentences.txt")
|
184 |
-
|
185 |
# tokenize the original text by sentence and words while keeping the style
|
186 |
original_tokenized_sentences_with_style = [tokenize_with_runs(runs, detokenizer) for runs in
|
187 |
original_paragraphs_with_runs]
|
@@ -194,13 +200,13 @@ def generate_alignments(original_paragraphs_with_runs, translated_paragraphs, al
|
|
194 |
translated_tokenized_sentences = [word_tokenize(sentence) for
|
195 |
translated_paragraph in translated_paragraphs for sentence in
|
196 |
sent_tokenize(translated_paragraph)]
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
199 |
-
with open(temp_file_path, "w") as out_file:
|
200 |
-
for original, translated in zip(original_tokenized_sentences_with_style, translated_tokenized_sentences):
|
201 |
-
out_file.write(f"{' '.join(item['text'] for item in original)} ||| {' '.join(translated)}\n")
|
202 |
-
|
203 |
-
alignments = aligner.align(temp_file_path)
|
204 |
|
205 |
# using the alignments generated by fastalign, we need to copy the style of the original token to the translated one
|
206 |
translated_sentences_with_style = []
|
@@ -238,7 +244,7 @@ def group_by_style(values, detokenizer):
|
|
238 |
x['paragraph_index'])):
|
239 |
text = detokenizer.detokenize([item['text'] for item in group])
|
240 |
|
241 |
-
if groups and not text.startswith((",", ";", ":", ".", ")")):
|
242 |
text = " " + text
|
243 |
|
244 |
groups.append({"text": text,
|
@@ -309,21 +315,29 @@ def translate_document(input_file,
|
|
309 |
processed_original_paragraphs_with_runs = [preprocess_runs(runs) for runs in paragraphs_with_runs]
|
310 |
|
311 |
print("Generating alignments...")
|
|
|
312 |
translated_sentences_with_style = generate_alignments(processed_original_paragraphs_with_runs,
|
313 |
translated_paragraphs, aligner,
|
314 |
temp_folder, detokenizer)
|
315 |
-
print("Finished alignments")
|
316 |
|
317 |
# flatten the sentences into a list of tokens
|
318 |
translated_tokens_with_style = [item for sublist in translated_sentences_with_style for item in sublist]
|
319 |
# group the tokens by style/run
|
320 |
translated_runs_with_style = group_by_style(translated_tokens_with_style, detokenizer)
|
321 |
-
print("Grouped by style")
|
322 |
|
323 |
# group the runs by original paragraph
|
324 |
-
translated_paragraphs_with_style =
|
325 |
for item in translated_runs_with_style:
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
for paragraph_index, original_paragraph in enumerate(doc.paragraphs):
|
329 |
# in case there are empty paragraphs
|
|
|
3 |
import requests
|
4 |
import tqdm
|
5 |
import os
|
|
|
|
|
6 |
|
7 |
from docx import Document
|
8 |
from docx.text.hyperlink import Hyperlink
|
|
|
14 |
nltk.download('punkt_tab')
|
15 |
|
16 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
|
|
17 |
|
18 |
from subprocess import Popen, PIPE
|
19 |
|
|
|
56 |
fastalign_bin = "./fast_align"
|
57 |
atools_bin = "./atools"
|
58 |
|
59 |
+
self.temp_file_path = os.path.join(temp_folder, "tokenized_sentences.txt")
|
|
|
|
|
|
|
60 |
|
61 |
+
self.forward_command = [fastalign_bin, "-i", self.temp_file_path, "-d", "-T", fwd_T, "-m", fwd_m, "-f",
|
62 |
+
forward_params_path]
|
63 |
+
self.reverse_command = [fastalign_bin, "-i", self.temp_file_path, "-d", "-T", rev_T, "-m", rev_m, "-f",
|
64 |
+
reverse_params_path, "r"]
|
65 |
+
|
66 |
+
self.symmetric_command = [atools_bin, "-i", self.forward_alignment_file_path, "-j",
|
67 |
+
self.reverse_alignment_file_path, "-c", "grow-diag-final-and"]
|
68 |
|
69 |
def __simplify_alignment_file(self, file):
|
70 |
with fileinput.FileInput(file, inplace=True, backup='.bak') as f:
|
|
|
82 |
T = line.split()[-1]
|
83 |
return T, m
|
84 |
|
85 |
+
def align(self, original_sentences, translated_sentences):
|
86 |
+
# create temporary file which fastalign will use
|
87 |
+
with open(self.temp_file_path, "w") as temp_file:
|
88 |
+
for original, translated in zip(original_sentences, translated_sentences):
|
89 |
+
temp_file.write(f"{original} ||| {translated}\n")
|
90 |
+
|
91 |
# generate forward alignment
|
92 |
+
with open(self.forward_alignment_file_path, 'w') as f_out, open(self.reverse_alignment_file_path, 'w') as r_out:
|
93 |
+
fw_process = Popen(self.forward_command, stdout=f_out)
|
94 |
+
# generate reverse alignment
|
95 |
+
r_process = Popen(self.reverse_command, stdout=r_out)
|
96 |
+
|
97 |
+
# wait for both to finish
|
98 |
+
fw_process.wait()
|
99 |
+
r_process.wait()
|
100 |
|
101 |
# for some reason the output file contains more information than needed, remove it
|
102 |
self.__simplify_alignment_file(self.forward_alignment_file_path)
|
103 |
self.__simplify_alignment_file(self.reverse_alignment_file_path)
|
104 |
|
105 |
# generate symmetrical alignment
|
106 |
+
process = Popen(self.symmetric_command, stdin=PIPE, stdout=PIPE, stderr=PIPE)
|
107 |
process.wait()
|
108 |
|
109 |
# get final alignments and format them
|
|
|
188 |
for f in os.listdir(temp_folder):
|
189 |
os.remove(os.path.join(temp_folder, f))
|
190 |
|
|
|
|
|
191 |
# tokenize the original text by sentence and words while keeping the style
|
192 |
original_tokenized_sentences_with_style = [tokenize_with_runs(runs, detokenizer) for runs in
|
193 |
original_paragraphs_with_runs]
|
|
|
200 |
translated_tokenized_sentences = [word_tokenize(sentence) for
|
201 |
translated_paragraph in translated_paragraphs for sentence in
|
202 |
sent_tokenize(translated_paragraph)]
|
203 |
+
original_sentences = []
|
204 |
+
translated_sentences = []
|
205 |
+
for original, translated in zip(original_tokenized_sentences_with_style, translated_tokenized_sentences):
|
206 |
+
original_sentences.append(' '.join(item['text'] for item in original))
|
207 |
+
translated_sentences.append(' '.join(translated))
|
208 |
|
209 |
+
alignments = aligner.align(original_sentences, translated_sentences)
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
# using the alignments generated by fastalign, we need to copy the style of the original token to the translated one
|
212 |
translated_sentences_with_style = []
|
|
|
244 |
x['paragraph_index'])):
|
245 |
text = detokenizer.detokenize([item['text'] for item in group])
|
246 |
|
247 |
+
if groups and not text.startswith((",", ";", ":", ".", ")", "!", "?")):
|
248 |
text = " " + text
|
249 |
|
250 |
groups.append({"text": text,
|
|
|
315 |
processed_original_paragraphs_with_runs = [preprocess_runs(runs) for runs in paragraphs_with_runs]
|
316 |
|
317 |
print("Generating alignments...")
|
318 |
+
start_time = time.time()
|
319 |
translated_sentences_with_style = generate_alignments(processed_original_paragraphs_with_runs,
|
320 |
translated_paragraphs, aligner,
|
321 |
temp_folder, detokenizer)
|
322 |
+
print(f"Finished alignments in {time.time() - start_time} seconds")
|
323 |
|
324 |
# flatten the sentences into a list of tokens
|
325 |
translated_tokens_with_style = [item for sublist in translated_sentences_with_style for item in sublist]
|
326 |
# group the tokens by style/run
|
327 |
translated_runs_with_style = group_by_style(translated_tokens_with_style, detokenizer)
|
|
|
328 |
|
329 |
# group the runs by original paragraph
|
330 |
+
translated_paragraphs_with_style = dict()
|
331 |
for item in translated_runs_with_style:
|
332 |
+
if item['paragraph_index'] in translated_paragraphs_with_style:
|
333 |
+
translated_paragraphs_with_style[item['paragraph_index']].append(item)
|
334 |
+
else:
|
335 |
+
# first item in the paragraph, remove starting blank space we introduced in group_by_style(), where we
|
336 |
+
# didn't know where paragraphs started and ended
|
337 |
+
first_item_in_paragraph = item.copy()
|
338 |
+
first_item_in_paragraph["text"] = first_item_in_paragraph["text"].lstrip(" ")
|
339 |
+
translated_paragraphs_with_style[item['paragraph_index']] = []
|
340 |
+
translated_paragraphs_with_style[item['paragraph_index']].append(first_item_in_paragraph)
|
341 |
|
342 |
for paragraph_index, original_paragraph in enumerate(doc.paragraphs):
|
343 |
# in case there are empty paragraphs
|