Spaces:
Sleeping
Sleeping
Upload 14 files
Browse files- .gitattributes +3 -0
- .gitignore +7 -0
- app.py +326 -0
- best.pt +3 -0
- bus.jpg +0 -0
- image_0.jpg +0 -0
- image_1.jpg +0 -0
- image_ladder.png +3 -0
- image_tyre.png +3 -0
- render.py +63 -0
- requirements.txt +476 -0
- video.mp4 +3 -0
- yolov8n.pt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
image_ladder.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
image_tyre.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
video.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flagged/
|
2 |
+
*.pt
|
3 |
+
*.png
|
4 |
+
*.jpg
|
5 |
+
*.mp4
|
6 |
+
*.mkv
|
7 |
+
gradio_cached_examples/
|
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import io
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import cv2
|
8 |
+
import requests
|
9 |
+
import os
|
10 |
+
from ultralytics import YOLO
|
11 |
+
|
12 |
+
from ultralytics.utils.plotting import Annotator, colors
|
13 |
+
from render import custom_render_result
|
14 |
+
|
15 |
+
file_urls = [
|
16 |
+
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
|
17 |
+
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
|
18 |
+
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
19 |
+
]
|
20 |
+
|
21 |
+
def download_file(url, save_name):
|
22 |
+
url = url
|
23 |
+
if not os.path.exists(save_name):
|
24 |
+
file = requests.get(url)
|
25 |
+
open(save_name, 'wb').write(file.content)
|
26 |
+
|
27 |
+
for i, url in enumerate(file_urls):
|
28 |
+
if 'mp4' in file_urls[i]:
|
29 |
+
download_file(
|
30 |
+
file_urls[i],
|
31 |
+
f"video.mp4"
|
32 |
+
)
|
33 |
+
else:
|
34 |
+
download_file(
|
35 |
+
file_urls[i],
|
36 |
+
f"image_{i}.jpg"
|
37 |
+
)
|
38 |
+
|
39 |
+
def get_image_from_bytes(binary_image: bytes) -> Image:
|
40 |
+
"""Convert image from bytes to PIL RGB format
|
41 |
+
|
42 |
+
**Args:**
|
43 |
+
- **binary_image (bytes):** The binary representation of the image
|
44 |
+
|
45 |
+
**Returns:**
|
46 |
+
- **PIL.Image:** The image in PIL RGB format
|
47 |
+
"""
|
48 |
+
input_image = Image.open(io.BytesIO(binary_image)).convert("RGB")
|
49 |
+
return input_image
|
50 |
+
|
51 |
+
|
52 |
+
def get_bytes_from_image(image: Image) -> bytes:
|
53 |
+
"""
|
54 |
+
Convert PIL image to Bytes
|
55 |
+
|
56 |
+
Args:
|
57 |
+
image (Image): A PIL image instance
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
bytes : BytesIO object that contains the image in JPEG format with quality 85
|
61 |
+
"""
|
62 |
+
return_image = io.BytesIO()
|
63 |
+
image.save(return_image, format='JPEG', quality=85) # save the image in JPEG format with quality 85
|
64 |
+
return_image.seek(0) # set the pointer to the beginning of the file
|
65 |
+
return return_image
|
66 |
+
|
67 |
+
|
68 |
+
def transform_predict_to_df(results: list, labeles_dict: dict) -> pd.DataFrame:
|
69 |
+
"""
|
70 |
+
Transform predict from yolov8 (torch.Tensor) to pandas DataFrame.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
results (list): A list containing the predict output from yolov8 in the form of a torch.Tensor.
|
74 |
+
labeles_dict (dict): A dictionary containing the labels names, where the keys are the class ids and the values are the label names.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
predict_bbox (pd.DataFrame): A DataFrame containing the bounding box coordinates, confidence scores and class labels.
|
78 |
+
"""
|
79 |
+
# Transform the Tensor to numpy array
|
80 |
+
predict_bbox = pd.DataFrame(results[0].to("cpu").numpy().boxes.xyxy, columns=['xmin', 'ymin', 'xmax', 'ymax'])
|
81 |
+
# Add the confidence of the prediction to the DataFrame
|
82 |
+
predict_bbox['confidence'] = results[0].to("cpu").numpy().boxes.conf
|
83 |
+
# Add the class of the prediction to the DataFrame
|
84 |
+
predict_bbox['class'] = (results[0].to("cpu").numpy().boxes.cls).astype(int)
|
85 |
+
# Replace the class number with the class name from the labeles_dict
|
86 |
+
predict_bbox['name'] = predict_bbox["class"].replace(labeles_dict)
|
87 |
+
return predict_bbox
|
88 |
+
|
89 |
+
|
90 |
+
def get_model_predict(model: YOLO, input_image: Image, save: bool = False, image_size: int = 1248, conf: float = 0.5,
|
91 |
+
augment: bool = False) -> pd.DataFrame:
|
92 |
+
"""
|
93 |
+
Get the predictions of a model on an input image.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
model (YOLO): The trained YOLO model.
|
97 |
+
input_image (Image): The image on which the model will make predictions.
|
98 |
+
save (bool, optional): Whether to save the image with the predictions. Defaults to False.
|
99 |
+
image_size (int, optional): The size of the image the model will receive. Defaults to 1248.
|
100 |
+
conf (float, optional): The confidence threshold for the predictions. Defaults to 0.5.
|
101 |
+
augment (bool, optional): Whether to apply data augmentation on the input image. Defaults to False.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
pd.DataFrame: A DataFrame containing the predictions.
|
105 |
+
"""
|
106 |
+
# Make predictions
|
107 |
+
predictions = model.predict(
|
108 |
+
imgsz=image_size,
|
109 |
+
source=input_image,
|
110 |
+
conf=conf,
|
111 |
+
save=save,
|
112 |
+
augment=augment,
|
113 |
+
flipud=0.0,
|
114 |
+
fliplr=0.0,
|
115 |
+
mosaic=0.0,
|
116 |
+
)
|
117 |
+
|
118 |
+
# Transform predictions to pandas dataframe
|
119 |
+
predictions = transform_predict_to_df(predictions, model.model.names)
|
120 |
+
return predictions
|
121 |
+
|
122 |
+
|
123 |
+
def get_model_segment(model: YOLO, input_image: Image, save: bool = False, image_size: int = 1248, conf: float = 0.25,
|
124 |
+
augment: bool = False) -> pd.DataFrame:
|
125 |
+
"""
|
126 |
+
Get the predictions of a model on an input image.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
model (YOLO): The trained YOLO model.
|
130 |
+
input_image (Image): The image on which the model will make predictions.
|
131 |
+
save (bool, optional): Whether to save the image with the predictions. Defaults to False.
|
132 |
+
image_size (int, optional): The size of the image the model will receive. Defaults to 1248.
|
133 |
+
conf (float, optional): The confidence threshold for the predictions. Defaults to 0.25.
|
134 |
+
augment (bool, optional): Whether to apply data augmentation on the input image. Defaults to False.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
pd.DataFrame: A DataFrame containing the predictions.
|
138 |
+
"""
|
139 |
+
# Make predictions
|
140 |
+
predictions = model.predict(
|
141 |
+
imgsz=image_size,
|
142 |
+
source=input_image,
|
143 |
+
conf=conf,
|
144 |
+
save=save,
|
145 |
+
augment=augment,
|
146 |
+
flipud=0.0,
|
147 |
+
fliplr=0.0,
|
148 |
+
mosaic=0.0,
|
149 |
+
)
|
150 |
+
|
151 |
+
# Transform predictions to pandas dataframe
|
152 |
+
predictions = transform_predict_to_df(predictions, model.model.names)
|
153 |
+
return predictions
|
154 |
+
|
155 |
+
|
156 |
+
################################# BBOX Func #####################################
|
157 |
+
|
158 |
+
def add_bboxs_on_img(image: Image, predict: pd.DataFrame()) -> Image:
|
159 |
+
"""
|
160 |
+
add a bounding box on the image
|
161 |
+
|
162 |
+
Args:
|
163 |
+
image (Image): input image
|
164 |
+
predict (pd.DataFrame): predict from model
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
Image: image whis bboxs
|
168 |
+
"""
|
169 |
+
# Create an annotator object
|
170 |
+
annotator = Annotator(np.array(image))
|
171 |
+
|
172 |
+
# sort predict by xmin value
|
173 |
+
predict = predict.sort_values(by=['xmin'], ascending=True)
|
174 |
+
|
175 |
+
# iterate over the rows of predict dataframe
|
176 |
+
for i, row in predict.iterrows():
|
177 |
+
# create the text to be displayed on image
|
178 |
+
text = f"{row['name']}: {int(row['confidence'] * 100)}%"
|
179 |
+
# get the bounding box coordinates
|
180 |
+
bbox = [row['xmin'], row['ymin'], row['xmax'], row['ymax']]
|
181 |
+
# add the bounding box and text on the image
|
182 |
+
annotator.box_label(bbox, text, color=colors(row['class'], True))
|
183 |
+
# convert the annotated image to PIL image
|
184 |
+
return Image.fromarray(annotator.result())
|
185 |
+
|
186 |
+
|
187 |
+
################################# Models #####################################
|
188 |
+
|
189 |
+
|
190 |
+
def detect_sample_model(input_image: Image) -> pd.DataFrame:
|
191 |
+
"""
|
192 |
+
Predict from sample_model.
|
193 |
+
Base on YoloV8
|
194 |
+
|
195 |
+
Args:
|
196 |
+
input_image (Image): The input image.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
pd.DataFrame: DataFrame containing the object location.
|
200 |
+
"""
|
201 |
+
predict = get_model_predict(
|
202 |
+
model=model_sample_detect,
|
203 |
+
input_image=input_image,
|
204 |
+
save=False,
|
205 |
+
image_size=640,
|
206 |
+
augment=False,
|
207 |
+
conf=0.2,
|
208 |
+
)
|
209 |
+
return predict
|
210 |
+
|
211 |
+
def yoloV8_func(image: gr.Image = None,
|
212 |
+
image_size: int = 640,
|
213 |
+
conf_threshold: float = 0.4,
|
214 |
+
iou_threshold: float = 0.5,
|
215 |
+
model_name: str = 'YOLOv8-medium'):
|
216 |
+
"""This function performs YOLOv8 object detection on the given image.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
image (gr.Image, optional): Input image to detect objects on. Defaults to None.
|
220 |
+
image_size (int, optional): Desired image size for the model. Defaults to 640.
|
221 |
+
conf_threshold (float, optional): Confidence threshold for object detection. Defaults to 0.4.
|
222 |
+
iou_threshold (float, optional): Intersection over Union threshold for object detection. Defaults to 0.50.
|
223 |
+
"""
|
224 |
+
# Load the YOLOv8 model from the 'best.pt' checkpoint
|
225 |
+
# model_path = "best.pt"
|
226 |
+
# model = torch.hub.load('ultralytics/yolov8', 'custom', path='/content/best.pt', force_reload=True, trust_repo=True)
|
227 |
+
|
228 |
+
# Perform object detection on the input image using the YOLOv8 model
|
229 |
+
results = model.predict(image,
|
230 |
+
conf=conf_threshold,
|
231 |
+
iou=iou_threshold,
|
232 |
+
imgsz=image_size)
|
233 |
+
|
234 |
+
# Print the detected objects' information (class, coordinates, and probability)
|
235 |
+
box = results[0].boxes
|
236 |
+
#print("Object type:", box.cls)
|
237 |
+
#print("Coordinates:", box.xyxy)
|
238 |
+
#print("Probability:", box.conf)
|
239 |
+
|
240 |
+
# Render the output image with bounding boxes around detected objects
|
241 |
+
render = custom_render_result(model=model, image=image, result=results[0])
|
242 |
+
return render
|
243 |
+
|
244 |
+
model = YOLO('best.pt')
|
245 |
+
path = [['image_tyre.png'], ['image_ladder.png']]
|
246 |
+
video_path = [['video.mp4']]
|
247 |
+
|
248 |
+
outputs_image = gr.components.Image(label="Output Image")
|
249 |
+
|
250 |
+
inputs_image= [
|
251 |
+
gr.components.Image(label="Input Image"),
|
252 |
+
gr.Slider(minimum=320, maximum=1280, step=32, label="Image Size", value=640),
|
253 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="Confidence Threshold",value=0.4, info="Usual value is 0.5"),
|
254 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="IOU Threshold",value=0.5, info="Usual value greater than 0.2"),
|
255 |
+
gr.components.Dropdown(["YOLOv8-nano", "YOLOv8-small", "YOLOv8-medium", "YOLOv8-large", "YOLOv8-xlarge"], value="YOLOv8-medium", label="YOLOv8 Model")
|
256 |
+
]
|
257 |
+
|
258 |
+
interface_image = gr.Interface(
|
259 |
+
fn=yoloV8_func,
|
260 |
+
inputs=inputs_image,
|
261 |
+
outputs=[outputs_image],
|
262 |
+
title="NonConforming Detector",
|
263 |
+
examples=path,
|
264 |
+
cache_examples=False,
|
265 |
+
)
|
266 |
+
def show_preds_video(video_path):
|
267 |
+
cap = cv2.VideoCapture(video_path)
|
268 |
+
|
269 |
+
conf_threshold = 0.4
|
270 |
+
iou_threshold = 0.5
|
271 |
+
image_size = 640
|
272 |
+
|
273 |
+
while(cap.isOpened()):
|
274 |
+
ret, frame = cap.read()
|
275 |
+
if ret:
|
276 |
+
frame_copy = frame.copy()
|
277 |
+
|
278 |
+
results = model.predict(frame,
|
279 |
+
conf=conf_threshold,
|
280 |
+
iou=iou_threshold,
|
281 |
+
imgsz=image_size)
|
282 |
+
|
283 |
+
# Print the detected objects' information (class, coordinates, and probability)
|
284 |
+
box = results[0].boxes
|
285 |
+
#print("Object type:", box.cls)
|
286 |
+
#print("Coordinates:", box.xyxy)
|
287 |
+
#print("Probability:", box.conf)
|
288 |
+
|
289 |
+
# Render the output image with bounding boxes around detected objects
|
290 |
+
render = custom_render_result(model=model, image=frame, result=results[0])
|
291 |
+
yield render
|
292 |
+
"""
|
293 |
+
outputs = model.predict(source=frame)
|
294 |
+
results = outputs[0].cpu().numpy()
|
295 |
+
for i, det in enumerate(results.boxes.xyxy):
|
296 |
+
cv2.rectangle(
|
297 |
+
frame_copy,
|
298 |
+
(int(det[0]), int(det[1])),
|
299 |
+
(int(det[2]), int(det[3])),
|
300 |
+
color=(0, 0, 255),
|
301 |
+
thickness=2,
|
302 |
+
lineType=cv2.LINE_AA
|
303 |
+
)
|
304 |
+
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
305 |
+
"""
|
306 |
+
|
307 |
+
inputs_video = [
|
308 |
+
gr.components.Video(label="Input Video"),
|
309 |
+
|
310 |
+
]
|
311 |
+
outputs_video = [
|
312 |
+
gr.components.Image(label="Output Image"),
|
313 |
+
]
|
314 |
+
interface_video = gr.Interface(
|
315 |
+
fn=show_preds_video,
|
316 |
+
inputs=inputs_video,
|
317 |
+
outputs=outputs_video,
|
318 |
+
title="NonConforming Video Detector",
|
319 |
+
examples=video_path,
|
320 |
+
cache_examples=False,
|
321 |
+
)
|
322 |
+
|
323 |
+
gr.TabbedInterface(
|
324 |
+
[interface_image, interface_video],
|
325 |
+
tab_names=['Image inference', 'Video inference']
|
326 |
+
).queue().launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:303de6d2dbe1848be8fcc5d40d06ed44cd50d565785f4d96fb9292e48f90e3f4
|
3 |
+
size 52010006
|
bus.jpg
ADDED
![]() |
image_0.jpg
ADDED
![]() |
image_1.jpg
ADDED
![]() |
image_ladder.png
ADDED
![]() |
Git LFS Details
|
image_tyre.png
ADDED
![]() |
Git LFS Details
|
render.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from sahi.utils.cv import read_image_as_pil,get_bool_mask_from_coco_segmentation
|
4 |
+
from sahi.prediction import ObjectPrediction, PredictionScore,visualize_object_predictions
|
5 |
+
from PIL import Image
|
6 |
+
def custom_render_result(model,image, result,rect_th=2,text_th=2):
|
7 |
+
if model.overrides["task"] not in ["detect", "segment"]:
|
8 |
+
raise ValueError(
|
9 |
+
f"Model task must be either 'detect' or 'segment'. Got {model.overrides['task']}"
|
10 |
+
)
|
11 |
+
|
12 |
+
image = read_image_as_pil(image)
|
13 |
+
np_image = np.ascontiguousarray(image)
|
14 |
+
|
15 |
+
names = model.model.names
|
16 |
+
|
17 |
+
masks = result.masks
|
18 |
+
boxes = result.boxes
|
19 |
+
|
20 |
+
object_predictions = []
|
21 |
+
if boxes is not None:
|
22 |
+
det_ind = 0
|
23 |
+
for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
|
24 |
+
if masks:
|
25 |
+
img_height = np_image.shape[0]
|
26 |
+
img_width = np_image.shape[1]
|
27 |
+
segments = masks.segments
|
28 |
+
segments = segments[det_ind] # segments: np.array([[x1, y1], [x2, y2]])
|
29 |
+
# convert segments into full shape
|
30 |
+
segments[:, 0] = segments[:, 0] * img_width
|
31 |
+
segments[:, 1] = segments[:, 1] * img_height
|
32 |
+
segmentation = [segments.ravel().tolist()]
|
33 |
+
|
34 |
+
bool_mask = get_bool_mask_from_coco_segmentation(
|
35 |
+
segmentation, width=img_width, height=img_height
|
36 |
+
)
|
37 |
+
if sum(sum(bool_mask == 1)) <= 2:
|
38 |
+
continue
|
39 |
+
object_prediction = ObjectPrediction.from_coco_segmentation(
|
40 |
+
segmentation=segmentation,
|
41 |
+
category_name=names[int(cls)],
|
42 |
+
category_id=int(cls),
|
43 |
+
full_shape=[img_height, img_width],
|
44 |
+
)
|
45 |
+
object_prediction.score = PredictionScore(value=conf)
|
46 |
+
else:
|
47 |
+
object_prediction = ObjectPrediction(
|
48 |
+
bbox=xyxy.tolist(),
|
49 |
+
category_name=names[int(cls)],
|
50 |
+
category_id=int(cls),
|
51 |
+
score=conf,
|
52 |
+
)
|
53 |
+
object_predictions.append(object_prediction)
|
54 |
+
det_ind += 1
|
55 |
+
|
56 |
+
result = visualize_object_predictions(
|
57 |
+
image=np_image,
|
58 |
+
object_prediction_list=object_predictions,
|
59 |
+
rect_th=rect_th,
|
60 |
+
text_th=text_th,
|
61 |
+
)
|
62 |
+
|
63 |
+
return Image.fromarray(result["image"])
|
requirements.txt
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics requirements
|
2 |
+
# Usage: pip install -r requirements.txt
|
3 |
+
|
4 |
+
# Base ----------------------------------------
|
5 |
+
hydra-core>=1.2.0
|
6 |
+
matplotlib>=3.2.2
|
7 |
+
numpy>=1.18.5
|
8 |
+
opencv-python>=4.1.1
|
9 |
+
Pillow>=7.1.2
|
10 |
+
PyYAML>=5.3.1
|
11 |
+
requests>=2.23.0
|
12 |
+
scipy>=1.4.1
|
13 |
+
torch>=1.7.0
|
14 |
+
torchvision>=0.8.1
|
15 |
+
tqdm>=4.64.0
|
16 |
+
ultralytics
|
17 |
+
|
18 |
+
# Logging -------------------------------------
|
19 |
+
tensorboard>=2.4.1
|
20 |
+
# clearml
|
21 |
+
# comet
|
22 |
+
|
23 |
+
# Plotting ------------------------------------
|
24 |
+
pandas>=1.1.4
|
25 |
+
seaborn>=0.11.0
|
26 |
+
|
27 |
+
# Export --------------------------------------
|
28 |
+
# coremltools>=6.0 # CoreML export
|
29 |
+
# onnx>=1.12.0 # ONNX export
|
30 |
+
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
31 |
+
# nvidia-pyindex # TensorRT export
|
32 |
+
# nvidia-tensorrt # TensorRT export
|
33 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
34 |
+
# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
|
35 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
36 |
+
# openvino-dev # OpenVINO export
|
37 |
+
|
38 |
+
# Extras --------------------------------------
|
39 |
+
ipython # interactive notebook
|
40 |
+
psutil # system utilization
|
41 |
+
thop>=0.1.1 # FLOPs computation
|
42 |
+
# albumentations>=1.0.3
|
43 |
+
# pycocotools>=2.0.6 # COCO mAP
|
44 |
+
# roboflow
|
45 |
+
|
46 |
+
# HUB -----------------------------------------
|
47 |
+
GitPython>=3.1.24
|
48 |
+
|
49 |
+
|
50 |
+
absl-py==1.4.0
|
51 |
+
addict==2.4.0
|
52 |
+
adjustText==0.8
|
53 |
+
aiofiles==23.1.0
|
54 |
+
aiohttp==3.8.4
|
55 |
+
aiosignal==1.3.1
|
56 |
+
alabaster==0.7.13
|
57 |
+
albumentations==1.3.1
|
58 |
+
alembic==1.13.0
|
59 |
+
alibi-detect==0.11.4
|
60 |
+
altair==5.0.1
|
61 |
+
annotated-types==0.5.0
|
62 |
+
antlr4-python3-runtime==4.9.3
|
63 |
+
anyio==3.7.1
|
64 |
+
anylabeling==0.3.3
|
65 |
+
appdirs==1.4.4
|
66 |
+
argon2-cffi==21.3.0
|
67 |
+
argon2-cffi-bindings==21.2.0
|
68 |
+
arrow==1.2.3
|
69 |
+
astor==0.8.1
|
70 |
+
astroid==2.15.6
|
71 |
+
asttokens==2.2.1
|
72 |
+
astunparse==1.6.3
|
73 |
+
async-timeout==4.0.2
|
74 |
+
attrs==23.1.0
|
75 |
+
av==10.0.0
|
76 |
+
Babel==2.12.1
|
77 |
+
backcall==0.2.0
|
78 |
+
bbox==0.9.4
|
79 |
+
bbox-visualizer==0.1.0
|
80 |
+
bce-python-sdk==0.8.87
|
81 |
+
beautifulsoup4==4.12.2
|
82 |
+
bleach==6.0.0
|
83 |
+
blinker==1.6.2
|
84 |
+
boto3==1.28.5
|
85 |
+
botocore==1.31.5
|
86 |
+
build==0.10.0
|
87 |
+
cachetools==5.3.1
|
88 |
+
catalogue==2.0.9
|
89 |
+
certifi==2023.5.7
|
90 |
+
cffi==1.15.1
|
91 |
+
charset-normalizer==3.2.0
|
92 |
+
click==8.1.5
|
93 |
+
clip-ea==1.0
|
94 |
+
cloudpickle==2.2.1
|
95 |
+
clusteval==2.2.1
|
96 |
+
clustimage==1.5.20
|
97 |
+
cmake==3.26.4
|
98 |
+
colorama==0.4.6
|
99 |
+
coloredlogs==15.0.1
|
100 |
+
colorgram.py==1.2.0
|
101 |
+
colorlog==6.7.0
|
102 |
+
colormap==1.0.4
|
103 |
+
colourmap==1.1.16
|
104 |
+
comm==0.1.3
|
105 |
+
commonmark==0.9.1
|
106 |
+
contourpy==1.1.0
|
107 |
+
convcolors==2.2.0
|
108 |
+
coverage==5.3.1
|
109 |
+
cryptography==41.0.7
|
110 |
+
cycler==0.11.0
|
111 |
+
Cython==3.0.0
|
112 |
+
darkdetect==0.8.0
|
113 |
+
dask==2023.7.1
|
114 |
+
datazets==0.1.9
|
115 |
+
debugpy==1.6.7
|
116 |
+
decorator==4.4.2
|
117 |
+
decord==0.6.0
|
118 |
+
DeepImageSearch==2.5
|
119 |
+
deffcode==0.2.5
|
120 |
+
defusedxml==0.7.1
|
121 |
+
Deprecated==1.2.14
|
122 |
+
dill==0.3.7
|
123 |
+
distfit==1.7.3
|
124 |
+
distributed==2023.7.1
|
125 |
+
dm-tree==0.1.8
|
126 |
+
docutils==0.17.1
|
127 |
+
easydev==0.12.1
|
128 |
+
echo1-coco-split==0.1.5
|
129 |
+
efficientnet==1.0.0
|
130 |
+
einops==0.3.2
|
131 |
+
encord==0.1.103
|
132 |
+
exceptiongroup==1.1.2
|
133 |
+
executing==1.2.0
|
134 |
+
extcolors==1.0.0
|
135 |
+
faiss-cpu==1.7.4
|
136 |
+
fastapi==0.100.0
|
137 |
+
fastjsonschema==2.17.1
|
138 |
+
ffmpegio-core==0.8.3
|
139 |
+
ffmpy==0.3.1
|
140 |
+
filelock==3.12.2
|
141 |
+
fire==0.5.0
|
142 |
+
Flask==2.3.2
|
143 |
+
flask-babel==3.1.0
|
144 |
+
flatbuffers==23.5.26
|
145 |
+
flip-data==0.2.1
|
146 |
+
fonttools==4.41.0
|
147 |
+
fqdn==1.5.1
|
148 |
+
frozenlist==1.4.0
|
149 |
+
fsspec==2023.6.0
|
150 |
+
ftfy==6.1.3
|
151 |
+
funcy==1.18
|
152 |
+
future==0.18.3
|
153 |
+
gast==0.4.0
|
154 |
+
gitdb==4.0.10
|
155 |
+
GitPython==3.1.32
|
156 |
+
google-auth==2.22.0
|
157 |
+
google-auth-oauthlib==1.0.0
|
158 |
+
google-pasta==0.2.0
|
159 |
+
gradio==3.37.0
|
160 |
+
gradio_client==0.2.10
|
161 |
+
greenlet==3.0.2
|
162 |
+
-e git+https://github.com/IDEA-Research/GroundingDINO@60d796825e1266e56f7e4e9e00e88de662b67bd3#egg=groundingdino
|
163 |
+
grpcio==1.56.0
|
164 |
+
h11==0.14.0
|
165 |
+
h5py==3.9.0
|
166 |
+
httpcore==0.17.3
|
167 |
+
httptools==0.6.1
|
168 |
+
httpx==0.24.1
|
169 |
+
huggingface-hub==0.16.4
|
170 |
+
humanfriendly==10.0
|
171 |
+
hydra-core==1.3.2
|
172 |
+
idna==3.4
|
173 |
+
ijson==3.2.3
|
174 |
+
image-classifiers==1.0.0
|
175 |
+
image-quality==1.2.7
|
176 |
+
ImageHash==4.3.1
|
177 |
+
imageio==2.31.1
|
178 |
+
imageio-ffmpeg==0.4.8
|
179 |
+
imagesize==1.4.1
|
180 |
+
imgaug==0.4.0
|
181 |
+
imgviz==1.7.2
|
182 |
+
importlib-metadata==6.8.0
|
183 |
+
importlib-resources==6.1.0
|
184 |
+
imutils==0.5.4
|
185 |
+
inquirerpy==0.3.4
|
186 |
+
ipykernel==6.24.0
|
187 |
+
ipython==8.14.0
|
188 |
+
ipython-genutils==0.2.0
|
189 |
+
ipywidgets==8.0.7
|
190 |
+
ismember==1.0.2
|
191 |
+
isoduration==20.11.0
|
192 |
+
isort==5.12.0
|
193 |
+
itsdangerous==2.1.2
|
194 |
+
jaraco.classes==3.3.0
|
195 |
+
jax==0.4.14
|
196 |
+
jedi==0.18.2
|
197 |
+
Jinja2==3.1.2
|
198 |
+
jmespath==1.0.1
|
199 |
+
joblib==1.3.1
|
200 |
+
json-tricks==3.16.1
|
201 |
+
jsonpointer==2.4
|
202 |
+
jsonschema==4.18.4
|
203 |
+
jsonschema-specifications==2023.6.1
|
204 |
+
jupyter==1.0.0
|
205 |
+
jupyter-bbox-widget==0.5.0
|
206 |
+
jupyter-console==6.6.3
|
207 |
+
jupyter-events==0.6.3
|
208 |
+
jupyter_client==8.3.0
|
209 |
+
jupyter_core==5.3.1
|
210 |
+
jupyter_server==2.7.0
|
211 |
+
jupyter_server_terminals==0.4.4
|
212 |
+
jupyterlab-pygments==0.2.2
|
213 |
+
jupyterlab-widgets==3.0.8
|
214 |
+
jupyterlab_executor==2023.1.1
|
215 |
+
keras==2.15.0
|
216 |
+
Keras-Applications==1.0.8
|
217 |
+
keras-tqdm==2.0.1
|
218 |
+
keyring==24.2.0
|
219 |
+
kiwisolver==1.4.4
|
220 |
+
labelme==5.2.1
|
221 |
+
lazy-object-proxy==1.9.0
|
222 |
+
lazy_loader==0.3
|
223 |
+
libclang==16.0.6
|
224 |
+
libsvm==3.23.0.4
|
225 |
+
lightning-utilities==0.9.0
|
226 |
+
linkify-it-py==2.0.2
|
227 |
+
llvmlite==0.40.1
|
228 |
+
locket==1.0.0
|
229 |
+
loguru==0.6.0
|
230 |
+
Mako==1.3.0
|
231 |
+
Markdown==3.4.3
|
232 |
+
markdown-it-py==2.2.0
|
233 |
+
MarkupSafe==2.1.3
|
234 |
+
matplotlib==3.7.2
|
235 |
+
matplotlib-inline==0.1.6
|
236 |
+
mccabe==0.7.0
|
237 |
+
mdit-py-plugins==0.3.3
|
238 |
+
mdurl==0.1.2
|
239 |
+
mistune==3.0.1
|
240 |
+
ml-dtypes==0.2.0
|
241 |
+
more-itertools==9.1.0
|
242 |
+
moviepy==1.0.3
|
243 |
+
mpmath==1.3.0
|
244 |
+
msgpack==1.0.5
|
245 |
+
multidict==6.0.4
|
246 |
+
multimethod==1.10
|
247 |
+
multiprocess==0.70.15
|
248 |
+
mypy-extensions==1.0.0
|
249 |
+
natsort==8.4.0
|
250 |
+
nbclassic==1.0.0
|
251 |
+
nbclient==0.8.0
|
252 |
+
nbconvert==7.6.0
|
253 |
+
nbformat==5.9.1
|
254 |
+
nest-asyncio==1.5.6
|
255 |
+
networkx==3.1
|
256 |
+
nodeenv==1.8.0
|
257 |
+
nodejs-bin==16.15.1a4
|
258 |
+
notebook==6.5.4
|
259 |
+
notebook_shim==0.2.3
|
260 |
+
numba==0.57.1
|
261 |
+
numpy==1.25.1
|
262 |
+
oauthlib==3.2.2
|
263 |
+
omegaconf==2.3.0
|
264 |
+
onnx==1.13.1
|
265 |
+
onnx-simplifier==0.4.33
|
266 |
+
onnxruntime==1.14.1
|
267 |
+
opencv-python==4.8.0.74
|
268 |
+
orjson==3.9.2
|
269 |
+
packaging==23.1
|
270 |
+
pandas==2.0.3
|
271 |
+
Pillow==10.0.0
|
272 |
+
psutil==5.9.5
|
273 |
+
pydantic==2.0.3
|
274 |
+
openvino==2023.1.0
|
275 |
+
openvino-telemetry==2023.2.1
|
276 |
+
opt-einsum==3.3.0
|
277 |
+
orjson==3.9.2
|
278 |
+
overrides==7.3.1
|
279 |
+
p-tqdm==1.4.0
|
280 |
+
packaging==23.1
|
281 |
+
paddle-bfloat==0.1.7
|
282 |
+
paddlepaddle==2.5.1
|
283 |
+
paddleseg==2.8.0
|
284 |
+
pandas==2.0.3
|
285 |
+
pandas-stubs==2.0.1.230501
|
286 |
+
pandera==0.15.2
|
287 |
+
pandocfilters==1.5.0
|
288 |
+
parso==0.8.3
|
289 |
+
partd==1.4.0
|
290 |
+
pastel==0.2.1
|
291 |
+
patchify==0.2.3
|
292 |
+
pathos==0.3.1
|
293 |
+
patsy==0.5.4
|
294 |
+
pca==2.0.5
|
295 |
+
pexpect==4.8.0
|
296 |
+
pfzy==0.3.4
|
297 |
+
pickleshare==0.7.5
|
298 |
+
Pillow==10.0.0
|
299 |
+
pip-tools==7.1.0
|
300 |
+
piq==0.8.0
|
301 |
+
pkginfo==1.9.6
|
302 |
+
platformdirs==3.8.1
|
303 |
+
plotly==5.15.0
|
304 |
+
pluggy==1.2.0
|
305 |
+
poethepoet==0.16.5
|
306 |
+
pox==0.3.3
|
307 |
+
ppft==1.7.6.7
|
308 |
+
prettytable==3.8.0
|
309 |
+
prisma==0.8.2
|
310 |
+
proglog==0.1.10
|
311 |
+
prometheus-client==0.17.1
|
312 |
+
prompt-toolkit==3.0.39
|
313 |
+
protobuf==3.20.3
|
314 |
+
psutil==5.9.5
|
315 |
+
ptyprocess==0.7.0
|
316 |
+
pure-eval==0.2.2
|
317 |
+
pyasn1==0.5.0
|
318 |
+
pyasn1-modules==0.3.0
|
319 |
+
pybboxes==0.1.6
|
320 |
+
pyclay-annotation-utils @ https://github.com/cm107/annotation_utils/archive/development.zip#sha256=fbab99536104fe62a02d3113af8c8a62a10242aaf4dfe6cd818e34f2d199e0c9
|
321 |
+
pyclay-common-utils @ https://github.com/cm107/common_utils/archive/master.zip#sha256=9b2c664c8aa339a81edc087586d7cafa87c3b9a5aa91a13922e356ece148db4a
|
322 |
+
pyclay-logger @ https://github.com/cm107/logger/archive/master.zip#sha256=cddf54ebec6ecedd65ee832afc76f500dad8fea1bc44619318147d047568348b
|
323 |
+
pyclay-streamer @ https://github.com/cm107/streamer/archive/master.zip#sha256=8f63126e1c965a649d80972b2e7b7932252be144b0985a117c3a85bd3c1a56ba
|
324 |
+
pycocotools==2.0.6
|
325 |
+
pycparser==2.21
|
326 |
+
pycryptodome==3.18.0
|
327 |
+
pydantic==2.0.3
|
328 |
+
pydantic_core==2.3.0
|
329 |
+
pyDeprecate==0.3.2
|
330 |
+
pydub==0.25.1
|
331 |
+
pyee==8.2.2
|
332 |
+
Pygments==2.15.1
|
333 |
+
PyJWT==2.8.0
|
334 |
+
pylabel==0.1.53
|
335 |
+
pylint==2.17.4
|
336 |
+
pynndescent==0.5.11
|
337 |
+
pyparsing==3.0.9
|
338 |
+
pypickle==1.1.0
|
339 |
+
pyppeteer==1.0.2
|
340 |
+
pyproject_hooks==1.0.0
|
341 |
+
PyQt5==5.15.9
|
342 |
+
PyQt5-Qt5==5.15.2
|
343 |
+
PyQt5-sip==12.12.1
|
344 |
+
pyquaternion==0.9.9
|
345 |
+
pyreadline3==3.4.1
|
346 |
+
python-dateutil==2.8.2
|
347 |
+
python-dotenv==0.21.1
|
348 |
+
python-json-logger==2.0.7
|
349 |
+
python-multipart==0.0.6
|
350 |
+
python-splitter==0.0.3
|
351 |
+
pytz==2023.3
|
352 |
+
PyWavelets==1.4.1
|
353 |
+
pywin32==306
|
354 |
+
pywin32-ctypes==0.2.2
|
355 |
+
pywinpty==2.0.11
|
356 |
+
PyYAML==6.0.1
|
357 |
+
pyzmq==25.1.0
|
358 |
+
qimage2ndarray==1.10.0
|
359 |
+
qtconsole==5.4.3
|
360 |
+
QtPy==2.3.1
|
361 |
+
qudida==0.0.4
|
362 |
+
rapidfuzz==3.1.1
|
363 |
+
rarfile==4.0
|
364 |
+
readme-renderer==40.0
|
365 |
+
referencing==0.29.3
|
366 |
+
regex==2023.6.3
|
367 |
+
requests==2.31.0
|
368 |
+
requests-oauthlib==1.3.1
|
369 |
+
requests-toolbelt==1.0.0
|
370 |
+
rfc3339-validator==0.1.4
|
371 |
+
rfc3986==2.0.0
|
372 |
+
rfc3986-validator==0.1.1
|
373 |
+
rich==12.6.0
|
374 |
+
rpds-py==0.8.11
|
375 |
+
rsa==4.9
|
376 |
+
s3transfer==0.6.1
|
377 |
+
safetensors==0.3.1
|
378 |
+
sahi==0.11.15
|
379 |
+
scatterd==1.3.7
|
380 |
+
scikit-image==0.21.0
|
381 |
+
scikit-learn==1.3.0
|
382 |
+
scipy==1.11.1
|
383 |
+
seaborn==0.12.2
|
384 |
+
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git@6fdee8f2727f4506cfbbe553e23b895e27956588
|
385 |
+
segmentation-models==1.0.1
|
386 |
+
semantic-version==2.10.0
|
387 |
+
Send2Trash==1.8.2
|
388 |
+
Shapely==1.8.5.post1
|
389 |
+
six==1.16.0
|
390 |
+
smmap==5.0.0
|
391 |
+
sniffio==1.3.0
|
392 |
+
snowballstemmer==2.2.0
|
393 |
+
sortedcontainers==2.4.0
|
394 |
+
soupsieve==2.4.1
|
395 |
+
Sphinx==4.0.3
|
396 |
+
sphinx-rtd-theme==1.2.2
|
397 |
+
sphinxcontrib-applehelp==1.0.4
|
398 |
+
sphinxcontrib-devhelp==1.0.2
|
399 |
+
sphinxcontrib-htmlhelp==2.0.1
|
400 |
+
sphinxcontrib-jquery==4.1
|
401 |
+
sphinxcontrib-jsmath==1.0.1
|
402 |
+
sphinxcontrib-qthelp==1.0.3
|
403 |
+
sphinxcontrib-serializinghtml==1.1.5
|
404 |
+
split-folders==0.5.1
|
405 |
+
SQLAlchemy==1.4.41
|
406 |
+
sqlalchemy2-stubs==0.0.2a37
|
407 |
+
sqlmodel==0.0.8
|
408 |
+
stack-data==0.6.2
|
409 |
+
starlette==0.27.0
|
410 |
+
static-ffmpeg==2.5
|
411 |
+
statsmodels==0.14.1
|
412 |
+
stringcase==1.2.0
|
413 |
+
supervision==0.6.0
|
414 |
+
sympy==1.12
|
415 |
+
tblib==2.0.0
|
416 |
+
tenacity==8.2.2
|
417 |
+
tensorboard==2.15.1
|
418 |
+
tensorboard-data-server==0.7.1
|
419 |
+
tensorflow-estimator==2.15.0
|
420 |
+
tensorflow-intel==2.15.0
|
421 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
422 |
+
tensorflow-probability==0.19.0
|
423 |
+
termcolor==2.4.0
|
424 |
+
terminado==0.17.1
|
425 |
+
terminaltables==3.1.10
|
426 |
+
thop==0.1.1.post2209072238
|
427 |
+
threadpoolctl==3.2.0
|
428 |
+
tifffile==2023.7.10
|
429 |
+
timm==0.9.2
|
430 |
+
tinycss2==1.2.1
|
431 |
+
tokenizers==0.13.3
|
432 |
+
toml==0.10.2
|
433 |
+
tomli==2.0.1
|
434 |
+
tomlkit==0.11.8
|
435 |
+
toolz==0.12.0
|
436 |
+
torch==2.0.1+cu117
|
437 |
+
torchaudio==2.0.2+cu117
|
438 |
+
torchmetrics==1.2.0
|
439 |
+
torchvision==0.15.2+cu117
|
440 |
+
tornado==6.3.2
|
441 |
+
tqdm==4.65.0
|
442 |
+
traitlets==5.9.0
|
443 |
+
transformers==4.30.2
|
444 |
+
treelib==1.6.1
|
445 |
+
twine==4.0.2
|
446 |
+
typeguard==4.1.5
|
447 |
+
typer==0.6.1
|
448 |
+
types-cachetools==5.3.0.7
|
449 |
+
types-pytz==2022.7.1.2
|
450 |
+
typing-inspect==0.9.0
|
451 |
+
typing_extensions==4.7.1
|
452 |
+
tzdata==2023.3
|
453 |
+
uc-micro-py==1.0.2
|
454 |
+
ultralytics==8.0.136
|
455 |
+
umap-learn==0.5.5
|
456 |
+
uri-template==1.3.0
|
457 |
+
urllib3==1.26.18
|
458 |
+
uvicorn==0.23.1
|
459 |
+
video2images==1.3
|
460 |
+
visualdl==2.5.3
|
461 |
+
watchdog==2.3.1
|
462 |
+
watchfiles==0.21.0
|
463 |
+
wcwidth==0.2.12
|
464 |
+
webcolors==1.13
|
465 |
+
webencodings==0.5.1
|
466 |
+
websocket-client==1.6.1
|
467 |
+
websockets==11.0.3
|
468 |
+
Werkzeug==2.3.6
|
469 |
+
widgetsnbextension==4.0.8
|
470 |
+
win32-setctime==1.1.0
|
471 |
+
wrapt==1.14.1
|
472 |
+
xlrd==2.0.1
|
473 |
+
yapf==0.40.1
|
474 |
+
yarl==1.9.2
|
475 |
+
zict==3.0.0
|
476 |
+
zipp==3.16.2
|
video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:919e4ff5f44e76e718cc55b7b2eaf7cd13a97d6824fe420af514fea98576b0d7
|
3 |
+
size 5489045
|
yolov8n.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31e20dde3def09e2cf938c7be6fe23d9150bbbe503982af13345706515f2ef95
|
3 |
+
size 6534387
|