Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| """ | |
| A model worker executes the model. | |
| """ | |
| import argparse | |
| import asyncio | |
| import json | |
| import time | |
| import threading | |
| import uuid | |
| from fastapi import FastAPI, Request, BackgroundTasks | |
| from fastapi.responses import StreamingResponse | |
| import requests | |
| import torch | |
| import uvicorn | |
| from functools import partial | |
| from llava.constants import WORKER_HEART_BEAT_INTERVAL | |
| from llava.utils import (build_logger, server_error_msg, | |
| pretty_print_semaphore) | |
| from llava.model.builder import load_pretrained_model | |
| from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria | |
| from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from transformers import TextIteratorStreamer | |
| from threading import Thread | |
| GB = 1 << 30 | |
| worker_id = str(uuid.uuid4())[:6] | |
| logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
| global_counter = 0 | |
| model_semaphore = None | |
| def heart_beat_worker(controller): | |
| while True: | |
| time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
| controller.send_heart_beat() | |
| class ModelWorker: | |
| def __init__(self, controller_addr, worker_addr, | |
| worker_id, no_register, | |
| model_path, model_base, model_name, | |
| load_8bit, load_4bit, device): | |
| self.controller_addr = controller_addr | |
| self.worker_addr = worker_addr | |
| self.worker_id = worker_id | |
| if model_path.endswith("/"): | |
| model_path = model_path[:-1] | |
| if model_name is None: | |
| model_paths = model_path.split("/") | |
| if model_paths[-1].startswith('checkpoint-'): | |
| self.model_name = model_paths[-2] + "_" + model_paths[-1] | |
| else: | |
| self.model_name = model_paths[-1] | |
| else: | |
| self.model_name = model_name | |
| self.device = device | |
| logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
| self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( | |
| model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device) | |
| self.is_multimodal = 'llava' in self.model_name.lower() | |
| if not no_register: | |
| self.register_to_controller() | |
| self.heart_beat_thread = threading.Thread( | |
| target=heart_beat_worker, args=(self,)) | |
| self.heart_beat_thread.start() | |
| def register_to_controller(self): | |
| logger.info("Register to controller") | |
| url = self.controller_addr + "/register_worker" | |
| data = { | |
| "worker_name": self.worker_addr, | |
| "check_heart_beat": True, | |
| "worker_status": self.get_status() | |
| } | |
| r = requests.post(url, json=data) | |
| assert r.status_code == 200 | |
| def send_heart_beat(self): | |
| logger.info(f"Send heart beat. Models: {[self.model_name]}. " | |
| f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | |
| f"global_counter: {global_counter}") | |
| url = self.controller_addr + "/receive_heart_beat" | |
| while True: | |
| try: | |
| ret = requests.post(url, json={ | |
| "worker_name": self.worker_addr, | |
| "queue_length": self.get_queue_length()}, timeout=5) | |
| exist = ret.json()["exist"] | |
| break | |
| except requests.exceptions.RequestException as e: | |
| logger.error(f"heart beat error: {e}") | |
| time.sleep(5) | |
| if not exist: | |
| self.register_to_controller() | |
| def get_queue_length(self): | |
| if model_semaphore is None: | |
| return 0 | |
| else: | |
| return args.limit_model_concurrency - model_semaphore._value + (len( | |
| model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | |
| def get_status(self): | |
| return { | |
| "model_names": [self.model_name], | |
| "speed": 1, | |
| "queue_length": self.get_queue_length(), | |
| } | |
| def generate_stream(self, params): | |
| tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor | |
| prompt = params["prompt"] | |
| ori_prompt = prompt | |
| images = params.get("images", None) | |
| num_image_tokens = 0 | |
| if images is not None and len(images) > 0 and self.is_multimodal: | |
| if len(images) > 0: | |
| if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
| raise ValueError("Number of images does not match number of <image> tokens in prompt") | |
| images = [load_image_from_base64(image) for image in images] | |
| images = process_images(images, image_processor, model.config) | |
| if type(images) is list: | |
| images = [image.to(self.model.device, dtype=torch.float16) for image in images] | |
| else: | |
| images = images.to(self.model.device, dtype=torch.float16) | |
| replace_token = DEFAULT_IMAGE_TOKEN | |
| if getattr(self.model.config, 'mm_use_im_start_end', False): | |
| replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
| prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
| num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches | |
| else: | |
| images = None | |
| image_args = {"images": images} | |
| else: | |
| images = None | |
| image_args = {} | |
| temperature = float(params.get("temperature", 1.0)) | |
| top_p = float(params.get("top_p", 1.0)) | |
| max_context_length = getattr(model.config, 'max_position_embeddings', 2048) | |
| max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
| stop_str = params.get("stop", None) | |
| do_sample = True if temperature > 0.001 else False | |
| input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) | |
| max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) | |
| if max_new_tokens < 1: | |
| yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" | |
| return | |
| thread = Thread(target=model.generate, kwargs=dict( | |
| inputs=input_ids, | |
| do_sample=do_sample, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| stopping_criteria=[stopping_criteria], | |
| use_cache=True, | |
| **image_args | |
| )) | |
| thread.start() | |
| generated_text = ori_prompt | |
| for new_text in streamer: | |
| generated_text += new_text | |
| if generated_text.endswith(stop_str): | |
| generated_text = generated_text[:-len(stop_str)] | |
| yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" | |
| def generate_stream_gate(self, params): | |
| try: | |
| for x in self.generate_stream(params): | |
| yield x | |
| except ValueError as e: | |
| print("Caught ValueError:", e) | |
| ret = { | |
| "text": server_error_msg, | |
| "error_code": 1, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| except torch.cuda.CudaError as e: | |
| print("Caught torch.cuda.CudaError:", e) | |
| ret = { | |
| "text": server_error_msg, | |
| "error_code": 1, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| except Exception as e: | |
| print("Caught Unknown Error", e) | |
| ret = { | |
| "text": server_error_msg, | |
| "error_code": 1, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| app = FastAPI() | |
| def release_model_semaphore(fn=None): | |
| model_semaphore.release() | |
| if fn is not None: | |
| fn() | |
| async def generate_stream(request: Request): | |
| global model_semaphore, global_counter | |
| global_counter += 1 | |
| params = await request.json() | |
| if model_semaphore is None: | |
| model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
| await model_semaphore.acquire() | |
| worker.send_heart_beat() | |
| generator = worker.generate_stream_gate(params) | |
| background_tasks = BackgroundTasks() | |
| background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | |
| return StreamingResponse(generator, background=background_tasks) | |
| async def get_status(request: Request): | |
| return worker.get_status() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--host", type=str, default="localhost") | |
| parser.add_argument("--port", type=int, default=21002) | |
| parser.add_argument("--worker-address", type=str, | |
| default="http://localhost:21002") | |
| parser.add_argument("--controller-address", type=str, | |
| default="http://localhost:21001") | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--model-name", type=str) | |
| parser.add_argument("--device", type=str, default="cuda") | |
| parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") | |
| parser.add_argument("--limit-model-concurrency", type=int, default=5) | |
| parser.add_argument("--stream-interval", type=int, default=1) | |
| parser.add_argument("--no-register", action="store_true") | |
| parser.add_argument("--load-8bit", action="store_true") | |
| parser.add_argument("--load-4bit", action="store_true") | |
| args = parser.parse_args() | |
| logger.info(f"args: {args}") | |
| if args.multi_modal: | |
| logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") | |
| worker = ModelWorker(args.controller_address, | |
| args.worker_address, | |
| worker_id, | |
| args.no_register, | |
| args.model_path, | |
| args.model_base, | |
| args.model_name, | |
| args.load_8bit, | |
| args.load_4bit, | |
| args.device) | |
| uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |
