Update app.py
Browse files
app.py
CHANGED
|
@@ -1,172 +1,133 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
-
from fastapi.responses import StreamingResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import pipeline, TextStreamer
|
| 5 |
-
import
|
| 6 |
-
import httpx
|
| 7 |
-
import time
|
| 8 |
import queue
|
| 9 |
import threading
|
| 10 |
-
import
|
| 11 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
UPDATE_INTERVAL = 60 # seconds between KG updates
|
| 17 |
-
MAX_KG_SIZE = 50 # limit stored KG nodes to avoid memory bloat
|
| 18 |
-
|
| 19 |
-
# =========================
|
| 20 |
-
# MODELS
|
| 21 |
-
# =========================
|
| 22 |
-
# Main generator
|
| 23 |
-
generator = pipeline(
|
| 24 |
-
"text-generation",
|
| 25 |
-
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
| 26 |
-
device="cpu"
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
# Query + summarization model (SmolLM2 instruct)
|
| 30 |
-
query_generator = pipeline(
|
| 31 |
-
"text-generation",
|
| 32 |
-
model="HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 33 |
-
device="cpu"
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
summarizer = query_generator # same model for now
|
| 37 |
-
|
| 38 |
-
# =========================
|
| 39 |
-
# KNOWLEDGE GRAPH
|
| 40 |
-
# =========================
|
| 41 |
-
knowledge_graph = {}
|
| 42 |
|
| 43 |
-
|
| 44 |
-
# FASTAPI
|
| 45 |
-
# =========================
|
| 46 |
-
app = FastAPI()
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
class ModelInput(BaseModel):
|
| 49 |
prompt: str
|
| 50 |
-
max_new_tokens: int =
|
| 51 |
-
|
| 52 |
-
#
|
| 53 |
-
#
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
params = {
|
| 58 |
-
"q": query,
|
| 59 |
-
"format": "json",
|
| 60 |
-
"no_redirect": "1",
|
| 61 |
-
"no_html": "1",
|
| 62 |
-
"skip_disambig": "1"
|
| 63 |
-
}
|
| 64 |
-
async with httpx.AsyncClient() as client:
|
| 65 |
-
resp = await client.get(url, params=params, timeout=15)
|
| 66 |
-
return resp.json()
|
| 67 |
-
|
| 68 |
-
def clean_ddg_text(ddg_json):
|
| 69 |
-
abstract = ddg_json.get("AbstractText", "")
|
| 70 |
-
related = ddg_json.get("RelatedTopics", [])
|
| 71 |
-
related_texts = []
|
| 72 |
-
for item in related:
|
| 73 |
-
if isinstance(item, dict) and "Text" in item:
|
| 74 |
-
related_texts.append(item["Text"])
|
| 75 |
-
elif isinstance(item, dict) and "Topics" in item:
|
| 76 |
-
for sub in item["Topics"]:
|
| 77 |
-
if "Text" in sub:
|
| 78 |
-
related_texts.append(sub["Text"])
|
| 79 |
-
combined = (abstract + " " + " ".join(related_texts)).strip()
|
| 80 |
-
combined = re.sub(r"\s+", " ", combined)
|
| 81 |
-
if len(combined) > 1000:
|
| 82 |
-
combined = combined[:1000] + "..."
|
| 83 |
-
return combined
|
| 84 |
|
| 85 |
def generate_dynamic_query():
|
|
|
|
| 86 |
prompt = (
|
| 87 |
"Generate a short, specific search query about technology, startups, AI, or science. "
|
| 88 |
"Be creative, realistic, and output only the query with no extra words."
|
| 89 |
)
|
| 90 |
output = query_generator(
|
| 91 |
prompt,
|
| 92 |
-
max_new_tokens=
|
| 93 |
truncation=True,
|
| 94 |
do_sample=True,
|
| 95 |
-
temperature=0
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
return query
|
| 99 |
|
| 100 |
-
def
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def inject_relevant_kg(prompt: str):
|
| 111 |
-
"""Find relevant KG entries and inject into prompt."""
|
| 112 |
-
if not knowledge_graph:
|
| 113 |
-
return prompt
|
| 114 |
-
best_match = None
|
| 115 |
-
for key, node in knowledge_graph.items():
|
| 116 |
-
if any(word.lower() in prompt.lower() for word in key.split()):
|
| 117 |
-
best_match = node
|
| 118 |
-
break
|
| 119 |
-
if best_match:
|
| 120 |
-
return f"{prompt}\n\nRelevant knowledge from memory:\n{best_match['summary']}"
|
| 121 |
-
return prompt
|
| 122 |
-
|
| 123 |
-
# =========================
|
| 124 |
-
# BACKGROUND TASK
|
| 125 |
-
# =========================
|
| 126 |
-
async def update_knowledge_graph_periodically():
|
| 127 |
while True:
|
| 128 |
try:
|
| 129 |
query = generate_dynamic_query()
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
print("[KG Updater] Too little info found, retrying next cycle...")
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
oldest_key = min(knowledge_graph, key=lambda k: knowledge_graph[k]['timestamp'])
|
| 146 |
-
del knowledge_graph[oldest_key]
|
| 147 |
-
print(f"[KG Updater] Knowledge graph updated for query: {query}")
|
| 148 |
|
| 149 |
except Exception as e:
|
| 150 |
print(f"[KG Updater] Error: {e}")
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
#
|
| 159 |
-
|
| 160 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
@app.post("/generate/stream")
|
| 162 |
async def generate_stream(input: ModelInput):
|
| 163 |
q = queue.Queue()
|
| 164 |
|
| 165 |
def run_generation():
|
| 166 |
try:
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
streamer.put = enqueue_token
|
| 171 |
|
| 172 |
enriched_prompt = inject_relevant_kg(input.prompt)
|
|
@@ -181,72 +142,33 @@ async def generate_stream(input: ModelInput):
|
|
| 181 |
finally:
|
| 182 |
q.put(None)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
thread.start()
|
| 186 |
|
| 187 |
async def event_generator():
|
| 188 |
-
loop = asyncio.get_event_loop()
|
| 189 |
while True:
|
| 190 |
-
|
| 191 |
-
if
|
| 192 |
break
|
| 193 |
-
yield
|
| 194 |
|
| 195 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
| 196 |
|
| 197 |
-
#
|
| 198 |
-
#
|
| 199 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
@app.get("/knowledge")
|
| 201 |
async def get_knowledge():
|
| 202 |
return knowledge_graph
|
| 203 |
|
| 204 |
-
|
| 205 |
-
# TEST CLIENT PAGE
|
| 206 |
-
# =========================
|
| 207 |
-
@app.get("/", response_class=HTMLResponse)
|
| 208 |
async def root():
|
| 209 |
-
return """
|
| 210 |
-
<!DOCTYPE html>
|
| 211 |
-
<html>
|
| 212 |
-
<head><title>Xylaria Cognitive Worker</title></head>
|
| 213 |
-
<body>
|
| 214 |
-
<h2>Xylaria Cognitive Worker</h2>
|
| 215 |
-
<textarea id="prompt" rows="4" cols="60">Explain how AI startups secure funding</textarea><br/>
|
| 216 |
-
<button onclick="startStreaming()">Generate</button>
|
| 217 |
-
<pre id="output" style="white-space: pre-wrap; background:#eee; padding:10px; border-radius:5px; max-height:400px; overflow:auto;"></pre>
|
| 218 |
-
<h3>Knowledge Graph</h3>
|
| 219 |
-
<pre id="kg" style="background:#ddd; padding:10px; max-height:300px; overflow:auto;"></pre>
|
| 220 |
-
|
| 221 |
-
<script>
|
| 222 |
-
async function startStreaming() {
|
| 223 |
-
const prompt = document.getElementById("prompt").value;
|
| 224 |
-
const output = document.getElementById("output");
|
| 225 |
-
output.textContent = "";
|
| 226 |
-
const response = await fetch("/generate/stream", {
|
| 227 |
-
method: "POST",
|
| 228 |
-
headers: { "Content-Type": "application/json" },
|
| 229 |
-
body: JSON.stringify({ prompt: prompt, max_new_tokens: 64000 })
|
| 230 |
-
});
|
| 231 |
-
const reader = response.body.getReader();
|
| 232 |
-
const decoder = new TextDecoder();
|
| 233 |
-
while(true) {
|
| 234 |
-
const {done, value} = await reader.read();
|
| 235 |
-
if(done) break;
|
| 236 |
-
const chunk = decoder.decode(value, {stream: true});
|
| 237 |
-
output.textContent += chunk;
|
| 238 |
-
output.scrollTop = output.scrollHeight;
|
| 239 |
-
}
|
| 240 |
-
}
|
| 241 |
-
async function fetchKG() {
|
| 242 |
-
const kgPre = document.getElementById("kg");
|
| 243 |
-
const res = await fetch("/knowledge");
|
| 244 |
-
const data = await res.json();
|
| 245 |
-
kgPre.textContent = JSON.stringify(data, null, 2);
|
| 246 |
-
}
|
| 247 |
-
setInterval(fetchKG, 10000);
|
| 248 |
-
window.onload = fetchKG;
|
| 249 |
-
</script>
|
| 250 |
-
</body>
|
| 251 |
-
</html>
|
| 252 |
-
"""
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.responses import StreamingResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import pipeline, TextStreamer
|
| 5 |
+
import torch
|
|
|
|
|
|
|
| 6 |
import queue
|
| 7 |
import threading
|
| 8 |
+
import time
|
| 9 |
import re
|
| 10 |
+
from duckduckgo_search import DDGS
|
| 11 |
+
|
| 12 |
+
# ------------------------
|
| 13 |
+
# Config
|
| 14 |
+
# ------------------------
|
| 15 |
+
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 16 |
+
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
| 17 |
+
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
| 18 |
+
DEVICE = "cpu" # set to 0 for GPU
|
| 19 |
+
KG_UPDATE_INTERVAL = 60 # seconds
|
| 20 |
+
MAX_NEW_TOKENS = 64000
|
| 21 |
+
|
| 22 |
+
# ------------------------
|
| 23 |
+
# API + Models Init
|
| 24 |
+
# ------------------------
|
| 25 |
+
app = FastAPI()
|
| 26 |
|
| 27 |
+
generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
|
| 28 |
+
query_generator = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
|
| 29 |
+
summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
knowledge_graph = {}
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# ------------------------
|
| 34 |
+
# Data Model
|
| 35 |
+
# ------------------------
|
| 36 |
class ModelInput(BaseModel):
|
| 37 |
prompt: str
|
| 38 |
+
max_new_tokens: int = MAX_NEW_TOKENS
|
| 39 |
+
|
| 40 |
+
# ------------------------
|
| 41 |
+
# KG Functions
|
| 42 |
+
# ------------------------
|
| 43 |
+
def clean_text(text):
|
| 44 |
+
return re.sub(r"\s+", " ", text).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def generate_dynamic_query():
|
| 47 |
+
"""Generates a realistic short search query."""
|
| 48 |
prompt = (
|
| 49 |
"Generate a short, specific search query about technology, startups, AI, or science. "
|
| 50 |
"Be creative, realistic, and output only the query with no extra words."
|
| 51 |
)
|
| 52 |
output = query_generator(
|
| 53 |
prompt,
|
| 54 |
+
max_new_tokens=16,
|
| 55 |
truncation=True,
|
| 56 |
do_sample=True,
|
| 57 |
+
temperature=1.0,
|
| 58 |
+
top_p=0.9
|
| 59 |
+
)[0]["generated_text"].strip()
|
| 60 |
+
# Take only first line and remove 'Generate'
|
| 61 |
+
query = output.split("\n")[0]
|
| 62 |
+
query = re.sub(r"^Generate.*?:", "", query).strip()
|
| 63 |
return query
|
| 64 |
|
| 65 |
+
def search_ddg(query):
|
| 66 |
+
with DDGS() as ddgs:
|
| 67 |
+
results = list(ddgs.text(query, max_results=5))
|
| 68 |
+
return " ".join([r.get("body", "") for r in results])
|
| 69 |
+
|
| 70 |
+
def summarize_text(text):
|
| 71 |
+
summary_prompt = f"Summarize this in 3 concise sentences:\n\n{text}"
|
| 72 |
+
return summarizer(summary_prompt, max_new_tokens=100, truncation=True)[0]["generated_text"].strip()
|
| 73 |
+
|
| 74 |
+
def kg_updater():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
while True:
|
| 76 |
try:
|
| 77 |
query = generate_dynamic_query()
|
| 78 |
+
if not query or len(query) < 3:
|
| 79 |
+
time.sleep(KG_UPDATE_INTERVAL)
|
| 80 |
+
continue
|
| 81 |
|
| 82 |
+
print(f"[KG Updater] Searching DDG for query: {query}")
|
| 83 |
+
raw_text = clean_text(search_ddg(query))
|
| 84 |
+
if len(raw_text) < 40:
|
| 85 |
print("[KG Updater] Too little info found, retrying next cycle...")
|
| 86 |
+
time.sleep(KG_UPDATE_INTERVAL)
|
| 87 |
+
continue
|
| 88 |
+
|
| 89 |
+
summary = summarize_text(raw_text)
|
| 90 |
+
knowledge_graph[query] = {
|
| 91 |
+
"summary": summary,
|
| 92 |
+
"timestamp": time.time()
|
| 93 |
+
}
|
| 94 |
+
print(f"[KG Updater] Knowledge graph updated for query: {query}")
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
print(f"[KG Updater] Error: {e}")
|
| 98 |
+
time.sleep(KG_UPDATE_INTERVAL)
|
| 99 |
+
|
| 100 |
+
# Start KG updater thread
|
| 101 |
+
threading.Thread(target=kg_updater, daemon=True).start()
|
| 102 |
+
|
| 103 |
+
# ------------------------
|
| 104 |
+
# Prompt Injection
|
| 105 |
+
# ------------------------
|
| 106 |
+
def inject_relevant_kg(user_prompt):
|
| 107 |
+
# Simple keyword match for relevance
|
| 108 |
+
for query, data in knowledge_graph.items():
|
| 109 |
+
if any(word.lower() in user_prompt.lower() for word in query.split()):
|
| 110 |
+
return f"{user_prompt}\n\n[Relevant Info from Knowledge Graph]\n{data['summary']}\n"
|
| 111 |
+
return user_prompt
|
| 112 |
+
|
| 113 |
+
# ------------------------
|
| 114 |
+
# Streaming Generation
|
| 115 |
+
# ------------------------
|
| 116 |
@app.post("/generate/stream")
|
| 117 |
async def generate_stream(input: ModelInput):
|
| 118 |
q = queue.Queue()
|
| 119 |
|
| 120 |
def run_generation():
|
| 121 |
try:
|
| 122 |
+
tokenizer = generator.tokenizer
|
| 123 |
+
|
| 124 |
+
def enqueue_token(token_ids):
|
| 125 |
+
if hasattr(token_ids, "tolist"): # tensor → list
|
| 126 |
+
token_ids = token_ids.tolist()
|
| 127 |
+
text = tokenizer.decode(token_ids, skip_special_tokens=True)
|
| 128 |
+
q.put(text)
|
| 129 |
+
|
| 130 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
| 131 |
streamer.put = enqueue_token
|
| 132 |
|
| 133 |
enriched_prompt = inject_relevant_kg(input.prompt)
|
|
|
|
| 142 |
finally:
|
| 143 |
q.put(None)
|
| 144 |
|
| 145 |
+
threading.Thread(target=run_generation, daemon=True).start()
|
|
|
|
| 146 |
|
| 147 |
async def event_generator():
|
|
|
|
| 148 |
while True:
|
| 149 |
+
chunk = q.get()
|
| 150 |
+
if chunk is None:
|
| 151 |
break
|
| 152 |
+
yield chunk
|
| 153 |
|
| 154 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
| 155 |
|
| 156 |
+
# ------------------------
|
| 157 |
+
# Endpoints
|
| 158 |
+
# ------------------------
|
| 159 |
+
@app.post("/generate")
|
| 160 |
+
async def generate_text(input: ModelInput):
|
| 161 |
+
try:
|
| 162 |
+
enriched_prompt = inject_relevant_kg(input.prompt)
|
| 163 |
+
response = generator(enriched_prompt, max_new_tokens=input.max_new_tokens, do_sample=False)[0]["generated_text"]
|
| 164 |
+
return {"generated_text": response}
|
| 165 |
+
except Exception as e:
|
| 166 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 167 |
+
|
| 168 |
@app.get("/knowledge")
|
| 169 |
async def get_knowledge():
|
| 170 |
return knowledge_graph
|
| 171 |
|
| 172 |
+
@app.get("/")
|
|
|
|
|
|
|
|
|
|
| 173 |
async def root():
|
| 174 |
+
return {"message": "Welcome to the Cognitive Swarm Worker API with Streaming + KG!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|