Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,120 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import pipeline, TextStreamer
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class ModelInput(BaseModel):
|
7 |
prompt: str
|
8 |
-
max_new_tokens: int =
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
# Initialize
|
13 |
generator = pipeline(
|
14 |
"text-generation",
|
15 |
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
16 |
-
device="cpu"
|
17 |
)
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
def generate_response(prompt: str, max_new_tokens: int = 64000):
|
23 |
-
try:
|
24 |
-
messages = [{"role": "user", "content": prompt}]
|
25 |
-
output = generator(messages, max_new_tokens=max_new_tokens, do_sample=False, streamer=streamer)
|
26 |
-
return output[0]["generated_text"][-1]["content"]
|
27 |
-
except Exception as e:
|
28 |
-
raise ValueError(f"Error generating response: {e}")
|
29 |
-
|
30 |
-
@app.post("/generate")
|
31 |
-
async def generate_text(input: ModelInput):
|
32 |
-
try:
|
33 |
-
response = generate_response(
|
34 |
-
prompt=input.prompt,
|
35 |
-
max_new_tokens=input.max_new_tokens
|
36 |
-
)
|
37 |
-
return {"generated_text": response}
|
38 |
-
except Exception as e:
|
39 |
-
raise HTTPException(status_code=500, detail=str(e))
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@app.get("/")
|
42 |
async def root():
|
43 |
-
return {"message": "Welcome to the Streaming Model API!"}
|
|
|
1 |
+
from fastapi import FastAPI, Request, HTTPException
|
2 |
+
from fastapi.responses import StreamingResponse
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline, TextStreamer
|
5 |
+
import asyncio
|
6 |
+
import queue
|
7 |
+
import threading
|
8 |
+
import time
|
9 |
+
import httpx
|
10 |
+
import json
|
11 |
|
12 |
class ModelInput(BaseModel):
|
13 |
prompt: str
|
14 |
+
max_new_tokens: int = 128
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
+
# Initialize generator once
|
19 |
generator = pipeline(
|
20 |
"text-generation",
|
21 |
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
22 |
+
device="cpu"
|
23 |
)
|
24 |
|
25 |
+
# Shared knowledge graph, just a dict (in-memory)
|
26 |
+
knowledge_graph = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# --- Autonomous knowledge updater --- #
|
29 |
+
async def update_knowledge_graph_periodically():
|
30 |
+
while True:
|
31 |
+
try:
|
32 |
+
# Pick a random query (here: hardcoded or you can improve)
|
33 |
+
queries = ["latest tech startup news", "AI breakthroughs", "funding trends 2025"]
|
34 |
+
import random
|
35 |
+
query = random.choice(queries)
|
36 |
+
|
37 |
+
# Use DuckDuckGo Instant Answer API (free, no API key)
|
38 |
+
async with httpx.AsyncClient() as client:
|
39 |
+
resp = await client.get(
|
40 |
+
"https://api.duckduckgo.com/",
|
41 |
+
params={"q": query, "format": "json", "no_redirect": "1", "no_html": "1"}
|
42 |
+
)
|
43 |
+
data = resp.json()
|
44 |
+
|
45 |
+
# Extract some useful info (abstract text)
|
46 |
+
abstract = data.get("AbstractText", "")
|
47 |
+
related_topics = data.get("RelatedTopics", [])
|
48 |
+
|
49 |
+
# Save/update knowledge graph (super basic example)
|
50 |
+
knowledge_graph[query] = {
|
51 |
+
"abstract": abstract,
|
52 |
+
"related_topics": related_topics,
|
53 |
+
"timestamp": time.time()
|
54 |
+
}
|
55 |
+
|
56 |
+
print(f"Knowledge graph updated for query: {query}")
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error updating knowledge graph: {e}")
|
60 |
+
|
61 |
+
await asyncio.sleep(60) # wait 1 minute before next update
|
62 |
+
|
63 |
+
# Kick off background task on startup
|
64 |
+
@app.on_event("startup")
|
65 |
+
async def startup_event():
|
66 |
+
asyncio.create_task(update_knowledge_graph_periodically())
|
67 |
+
|
68 |
+
# --- Streaming generation endpoint --- #
|
69 |
+
@app.post("/generate/stream")
|
70 |
+
async def generate_stream(input: ModelInput):
|
71 |
+
prompt = input.prompt
|
72 |
+
max_new_tokens = input.max_new_tokens
|
73 |
+
|
74 |
+
q = queue.Queue()
|
75 |
+
|
76 |
+
def run_generation():
|
77 |
+
try:
|
78 |
+
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
|
79 |
+
|
80 |
+
# Monkey-patch streamer to push tokens to queue
|
81 |
+
def queue_token(token):
|
82 |
+
q.put(token)
|
83 |
+
|
84 |
+
streamer.put = queue_token
|
85 |
+
|
86 |
+
# Run generation with streamer attached
|
87 |
+
generator(
|
88 |
+
prompt,
|
89 |
+
max_new_tokens=max_new_tokens,
|
90 |
+
do_sample=False,
|
91 |
+
streamer=streamer
|
92 |
+
)
|
93 |
+
except Exception as e:
|
94 |
+
q.put(f"[ERROR] {e}")
|
95 |
+
finally:
|
96 |
+
q.put(None) # Sentinel to mark done
|
97 |
+
|
98 |
+
thread = threading.Thread(target=run_generation)
|
99 |
+
thread.start()
|
100 |
+
|
101 |
+
async def event_generator():
|
102 |
+
while True:
|
103 |
+
token = q.get()
|
104 |
+
if token is None:
|
105 |
+
break
|
106 |
+
yield token
|
107 |
+
|
108 |
+
return StreamingResponse(event_generator(), media_type="text/plain")
|
109 |
+
|
110 |
+
|
111 |
+
# Optional: Endpoint to query knowledge graph
|
112 |
+
@app.get("/knowledge")
|
113 |
+
async def get_knowledge():
|
114 |
+
return knowledge_graph
|
115 |
+
|
116 |
+
|
117 |
+
# Root
|
118 |
@app.get("/")
|
119 |
async def root():
|
120 |
+
return {"message": "Welcome to the Streaming Model API with live knowledge graph updater!"}
|