Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline, TextStreamer
|
5 |
import torch
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
# ------------------------
|
15 |
-
# Config
|
16 |
-
# ------------------------
|
17 |
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
18 |
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
19 |
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
@@ -21,155 +34,749 @@ DEVICE = 0 if torch.cuda.is_available() else "cpu"
|
|
21 |
|
22 |
DEEPSEEK_MAX_TOKENS = 64000
|
23 |
SMOLLM_MAX_TOKENS = 4192
|
24 |
-
|
25 |
KG_UPDATE_INTERVAL = 60 # seconds
|
26 |
-
|
|
|
27 |
|
28 |
-
#
|
29 |
-
#
|
30 |
-
#
|
31 |
-
app = FastAPI()
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
class ModelInput(BaseModel):
|
40 |
prompt: str
|
41 |
max_new_tokens: int = DEEPSEEK_MAX_TOKENS
|
42 |
|
43 |
-
#
|
44 |
-
#
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
)[
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
except Exception as e:
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
@app.post("/generate/stream")
|
108 |
-
async def generate_stream(
|
|
|
109 |
q = queue.Queue()
|
110 |
-
|
111 |
def run_generation():
|
112 |
try:
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
if hasattr(token_ids, "tolist"):
|
117 |
token_ids = token_ids.tolist()
|
118 |
-
text = tokenizer.decode(token_ids, skip_special_tokens=True)
|
119 |
q.put(text)
|
120 |
-
|
121 |
-
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
122 |
-
streamer.put =
|
123 |
-
|
124 |
-
|
125 |
generator(
|
126 |
enriched_prompt,
|
127 |
-
max_new_tokens=min(
|
128 |
-
do_sample=
|
129 |
-
|
|
|
|
|
|
|
130 |
)
|
|
|
131 |
except Exception as e:
|
132 |
q.put(f"[ERROR] {e}")
|
133 |
finally:
|
134 |
-
q.put(None)
|
135 |
-
|
|
|
136 |
threading.Thread(target=run_generation, daemon=True).start()
|
137 |
-
|
138 |
async def event_generator():
|
139 |
while True:
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
142 |
break
|
143 |
-
|
144 |
-
|
145 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
try:
|
153 |
-
|
154 |
-
|
155 |
-
enriched_prompt,
|
156 |
-
max_new_tokens=min(input.max_new_tokens, DEEPSEEK_MAX_TOKENS),
|
157 |
-
do_sample=False
|
158 |
-
)[0]["generated_text"]
|
159 |
-
return {"generated_text": output}
|
160 |
except Exception as e:
|
161 |
-
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
# ------------------------
|
171 |
-
# Root endpoint
|
172 |
-
# ------------------------
|
173 |
@app.get("/")
|
174 |
async def root():
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
import time
|
7 |
+
import threading
|
8 |
+
import queue
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
from typing import Dict, List, Optional, Any
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from concurrent.futures import ThreadPoolExecutor
|
13 |
+
|
14 |
from fastapi import FastAPI, HTTPException
|
15 |
from fastapi.responses import StreamingResponse
|
16 |
from pydantic import BaseModel
|
17 |
from transformers import pipeline, TextStreamer
|
18 |
import torch
|
19 |
+
import requests
|
20 |
+
from urllib.parse import quote
|
21 |
+
import networkx as nx
|
22 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
23 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
# ========================================================================================
|
27 |
+
# CONFIGURATION
|
28 |
+
# ========================================================================================
|
29 |
|
|
|
|
|
|
|
30 |
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
31 |
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
32 |
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
|
|
34 |
|
35 |
DEEPSEEK_MAX_TOKENS = 64000
|
36 |
SMOLLM_MAX_TOKENS = 4192
|
|
|
37 |
KG_UPDATE_INTERVAL = 60 # seconds
|
38 |
+
SEARCH_TIMEOUT = 10
|
39 |
+
MAX_RETRIES = 3
|
40 |
|
41 |
+
# ========================================================================================
|
42 |
+
# CORE DATA STRUCTURES
|
43 |
+
# ========================================================================================
|
|
|
44 |
|
45 |
+
@dataclass
|
46 |
+
class KnowledgeEntry:
|
47 |
+
query: str
|
48 |
+
content: str
|
49 |
+
summary: str
|
50 |
+
timestamp: datetime
|
51 |
+
relevance_score: float = 0.0
|
52 |
+
source_urls: List[str] = None
|
53 |
+
|
54 |
+
def __post_init__(self):
|
55 |
+
if self.source_urls is None:
|
56 |
+
self.source_urls = []
|
57 |
+
|
58 |
+
def is_expired(self, hours: int = 24) -> bool:
|
59 |
+
return datetime.now() - self.timestamp > timedelta(hours=hours)
|
60 |
|
61 |
class ModelInput(BaseModel):
|
62 |
prompt: str
|
63 |
max_new_tokens: int = DEEPSEEK_MAX_TOKENS
|
64 |
|
65 |
+
# ========================================================================================
|
66 |
+
# SEARCH ENGINE WITH FALLBACKS
|
67 |
+
# ========================================================================================
|
68 |
+
|
69 |
+
class MultiSearchEngine:
|
70 |
+
"""Robust search engine with multiple backends and fallbacks"""
|
71 |
+
|
72 |
+
def __init__(self):
|
73 |
+
self.search_engines = [
|
74 |
+
self._search_duckduckgo,
|
75 |
+
self._search_searx,
|
76 |
+
self._search_bing_fallback,
|
77 |
+
]
|
78 |
+
self.current_engine = 0
|
79 |
+
|
80 |
+
def search(self, query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
81 |
+
"""Search with automatic fallback to different engines"""
|
82 |
+
for attempt in range(len(self.search_engines)):
|
83 |
+
try:
|
84 |
+
engine = self.search_engines[self.current_engine]
|
85 |
+
results = engine(query, max_results)
|
86 |
+
if results:
|
87 |
+
return results
|
88 |
+
except Exception as e:
|
89 |
+
logging.warning(f"Search engine {self.current_engine} failed: {e}")
|
90 |
+
|
91 |
+
# Rotate to next engine
|
92 |
+
self.current_engine = (self.current_engine + 1) % len(self.search_engines)
|
93 |
+
|
94 |
+
logging.error("All search engines failed")
|
95 |
+
return []
|
96 |
+
|
97 |
+
def _search_duckduckgo(self, query: str, max_results: int) -> List[Dict[str, str]]:
|
98 |
+
"""DuckDuckGo search with rate limit handling"""
|
99 |
+
try:
|
100 |
+
from duckduckgo_search import DDGS
|
101 |
+
with DDGS() as ddgs:
|
102 |
+
results = []
|
103 |
+
for result in ddgs.text(query, max_results=max_results):
|
104 |
+
results.append({
|
105 |
+
'title': result.get('title', ''),
|
106 |
+
'body': result.get('body', ''),
|
107 |
+
'url': result.get('href', ''),
|
108 |
+
})
|
109 |
+
return results
|
110 |
+
except Exception as e:
|
111 |
+
if "ratelimit" in str(e).lower():
|
112 |
+
time.sleep(random.uniform(5, 15)) # Random backoff
|
113 |
+
raise e
|
114 |
+
|
115 |
+
def _search_searx(self, query: str, max_results: int) -> List[Dict[str, str]]:
|
116 |
+
"""Searx instance search"""
|
117 |
+
searx_instances = [
|
118 |
+
"https://searx.be",
|
119 |
+
"https://searx.info",
|
120 |
+
"https://search.privacy.sexy"
|
121 |
+
]
|
122 |
+
|
123 |
+
for instance in searx_instances:
|
124 |
+
try:
|
125 |
+
url = f"{instance}/search"
|
126 |
+
params = {
|
127 |
+
'q': query,
|
128 |
+
'format': 'json',
|
129 |
+
'categories': 'general'
|
130 |
+
}
|
131 |
+
response = requests.get(url, params=params, timeout=SEARCH_TIMEOUT)
|
132 |
+
if response.status_code == 200:
|
133 |
+
data = response.json()
|
134 |
+
results = []
|
135 |
+
for item in data.get('results', [])[:max_results]:
|
136 |
+
results.append({
|
137 |
+
'title': item.get('title', ''),
|
138 |
+
'body': item.get('content', ''),
|
139 |
+
'url': item.get('url', ''),
|
140 |
+
})
|
141 |
+
return results
|
142 |
+
except Exception:
|
143 |
+
continue
|
144 |
+
raise Exception("All Searx instances failed")
|
145 |
+
|
146 |
+
def _search_bing_fallback(self, query: str, max_results: int) -> List[Dict[str, str]]:
|
147 |
+
"""Fallback search using a simple web scraping approach"""
|
148 |
+
try:
|
149 |
+
# This would require additional implementation with web scraping
|
150 |
+
# For now, return empty to avoid dependency issues
|
151 |
+
return []
|
152 |
+
except Exception:
|
153 |
+
return []
|
154 |
+
|
155 |
+
# ========================================================================================
|
156 |
+
# AUTONOMOUS QUERY GENERATOR
|
157 |
+
# ========================================================================================
|
158 |
+
|
159 |
+
class AutonomousQueryGenerator:
|
160 |
+
"""Generates diverse, realistic queries autonomously"""
|
161 |
+
|
162 |
+
def __init__(self, model_pipeline):
|
163 |
+
self.model = model_pipeline
|
164 |
+
self.query_history = set()
|
165 |
+
self.domain_templates = [
|
166 |
+
"latest breakthrough in {domain}",
|
167 |
+
"new {domain} research 2025",
|
168 |
+
"{domain} startup funding news",
|
169 |
+
"emerging trends in {domain}",
|
170 |
+
"AI applications in {domain}",
|
171 |
+
"{domain} market analysis 2025",
|
172 |
+
"innovative {domain} technology",
|
173 |
+
"{domain} industry developments"
|
174 |
+
]
|
175 |
+
self.domains = [
|
176 |
+
"artificial intelligence", "machine learning", "robotics", "biotechnology",
|
177 |
+
"quantum computing", "blockchain", "cybersecurity", "fintech", "healthtech",
|
178 |
+
"edtech", "cleantech", "spacetech", "autonomous vehicles", "IoT", "5G",
|
179 |
+
"augmented reality", "virtual reality", "nanotechnology", "genomics",
|
180 |
+
"renewable energy", "smart cities", "edge computing", "cloud computing"
|
181 |
+
]
|
182 |
+
|
183 |
+
def generate_query(self) -> str:
|
184 |
+
"""Generate a unique, contextual query"""
|
185 |
+
max_attempts = 10
|
186 |
+
|
187 |
+
for _ in range(max_attempts):
|
188 |
+
# Choose generation strategy
|
189 |
+
strategy = random.choice([
|
190 |
+
self._generate_templated_query,
|
191 |
+
self._generate_model_query,
|
192 |
+
self._generate_trend_query,
|
193 |
+
self._generate_comparative_query
|
194 |
+
])
|
195 |
+
|
196 |
+
query = strategy()
|
197 |
+
|
198 |
+
# Ensure uniqueness and quality
|
199 |
+
if query and len(query.split()) >= 3 and query not in self.query_history:
|
200 |
+
self.query_history.add(query)
|
201 |
+
# Limit history size
|
202 |
+
if len(self.query_history) > 1000:
|
203 |
+
self.query_history = set(list(self.query_history)[-800:])
|
204 |
+
return query
|
205 |
+
|
206 |
+
# Fallback to simple template
|
207 |
+
domain = random.choice(self.domains)
|
208 |
+
template = random.choice(self.domain_templates)
|
209 |
+
return template.format(domain=domain)
|
210 |
+
|
211 |
+
def _generate_templated_query(self) -> str:
|
212 |
+
"""Generate query from templates"""
|
213 |
+
domain = random.choice(self.domains)
|
214 |
+
template = random.choice(self.domain_templates)
|
215 |
+
return template.format(domain=domain)
|
216 |
+
|
217 |
+
def _generate_model_query(self) -> str:
|
218 |
+
"""Generate query using language model"""
|
219 |
+
prompts = [
|
220 |
+
"Generate a specific search query about cutting-edge technology:",
|
221 |
+
"What's a trending topic in AI or science right now? (one query only):",
|
222 |
+
"Create a search query about startup innovation:",
|
223 |
+
"Generate a query about recent scientific breakthroughs:"
|
224 |
+
]
|
225 |
+
|
226 |
+
prompt = random.choice(prompts)
|
227 |
+
|
228 |
+
try:
|
229 |
+
output = self.model(
|
230 |
+
prompt,
|
231 |
+
max_new_tokens=50,
|
232 |
+
do_sample=True,
|
233 |
+
temperature=0.8,
|
234 |
+
top_p=0.9,
|
235 |
+
pad_token_id=self.model.tokenizer.eos_token_id
|
236 |
+
)[0]["generated_text"]
|
237 |
+
|
238 |
+
# Extract query from output
|
239 |
+
query = output.replace(prompt, "").strip()
|
240 |
+
query = re.sub(r'^["\'\-\s]*', '', query)
|
241 |
+
query = re.sub(r'["\'\.\s]*$', '', query)
|
242 |
+
query = query.split('\n')[0].strip()
|
243 |
+
|
244 |
+
return query if len(query) > 10 else ""
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
logging.warning(f"Model query generation failed: {e}")
|
248 |
+
return ""
|
249 |
+
|
250 |
+
def _generate_trend_query(self) -> str:
|
251 |
+
"""Generate queries about current trends"""
|
252 |
+
trend_terms = ["2025", "latest", "new", "emerging", "breakthrough", "innovation"]
|
253 |
+
domain = random.choice(self.domains)
|
254 |
+
trend = random.choice(trend_terms)
|
255 |
+
return f"{trend} {domain} developments"
|
256 |
+
|
257 |
+
def _generate_comparative_query(self) -> str:
|
258 |
+
"""Generate comparative queries"""
|
259 |
+
comparisons = [
|
260 |
+
"{} vs {} comparison",
|
261 |
+
"advantages of {} over {}",
|
262 |
+
"{} and {} integration",
|
263 |
+
"{} versus {} market share"
|
264 |
+
]
|
265 |
+
domains = random.sample(self.domains, 2)
|
266 |
+
template = random.choice(comparisons)
|
267 |
+
return template.format(domains[0], domains[1])
|
268 |
+
|
269 |
+
# ========================================================================================
|
270 |
+
# INTELLIGENT KNOWLEDGE GRAPH
|
271 |
+
# ========================================================================================
|
272 |
+
|
273 |
+
class IntelligentKnowledgeGraph:
|
274 |
+
"""Advanced knowledge graph with semantic understanding"""
|
275 |
+
|
276 |
+
def __init__(self):
|
277 |
+
self.graph = nx.DiGraph()
|
278 |
+
self.entries: Dict[str, KnowledgeEntry] = {}
|
279 |
+
self.vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
|
280 |
+
self.query_vectors = None
|
281 |
+
self.vector_queries = []
|
282 |
+
|
283 |
+
def add_knowledge(self, entry: KnowledgeEntry):
|
284 |
+
"""Add knowledge entry with semantic indexing"""
|
285 |
+
self.entries[entry.query] = entry
|
286 |
+
self.graph.add_node(entry.query,
|
287 |
+
timestamp=entry.timestamp,
|
288 |
+
summary=entry.summary)
|
289 |
+
|
290 |
+
# Update semantic vectors
|
291 |
+
self._update_vectors()
|
292 |
+
|
293 |
+
# Create semantic connections
|
294 |
+
self._create_semantic_connections(entry.query)
|
295 |
+
|
296 |
+
def _update_vectors(self):
|
297 |
+
"""Update TF-IDF vectors for semantic search"""
|
298 |
+
try:
|
299 |
+
queries_and_summaries = [
|
300 |
+
f"{query} {entry.summary}"
|
301 |
+
for query, entry in self.entries.items()
|
302 |
+
]
|
303 |
+
|
304 |
+
if len(queries_and_summaries) > 0:
|
305 |
+
self.query_vectors = self.vectorizer.fit_transform(queries_and_summaries)
|
306 |
+
self.vector_queries = list(self.entries.keys())
|
307 |
+
except Exception as e:
|
308 |
+
logging.warning(f"Vector update failed: {e}")
|
309 |
+
|
310 |
+
def _create_semantic_connections(self, new_query: str):
|
311 |
+
"""Create edges between semantically similar entries"""
|
312 |
+
if self.query_vectors is None or len(self.vector_queries) < 2:
|
313 |
+
return
|
314 |
+
|
315 |
+
try:
|
316 |
+
new_text = f"{new_query} {self.entries[new_query].summary}"
|
317 |
+
new_vector = self.vectorizer.transform([new_text])
|
318 |
+
|
319 |
+
similarities = cosine_similarity(new_vector, self.query_vectors)[0]
|
320 |
+
|
321 |
+
for i, similarity in enumerate(similarities):
|
322 |
+
other_query = self.vector_queries[i]
|
323 |
+
if other_query != new_query and similarity > 0.3:
|
324 |
+
self.graph.add_edge(new_query, other_query, weight=similarity)
|
325 |
+
self.graph.add_edge(other_query, new_query, weight=similarity)
|
326 |
+
|
327 |
+
except Exception as e:
|
328 |
+
logging.warning(f"Semantic connection creation failed: {e}")
|
329 |
+
|
330 |
+
def find_relevant_knowledge(self, prompt: str, max_entries: int = 5) -> List[KnowledgeEntry]:
|
331 |
+
"""Find relevant knowledge entries for a given prompt"""
|
332 |
+
if not self.entries:
|
333 |
+
return []
|
334 |
+
|
335 |
try:
|
336 |
+
# Vectorize the prompt
|
337 |
+
prompt_vector = self.vectorizer.transform([prompt])
|
338 |
+
|
339 |
+
# Calculate similarities
|
340 |
+
if self.query_vectors is not None:
|
341 |
+
similarities = cosine_similarity(prompt_vector, self.query_vectors)[0]
|
342 |
+
|
343 |
+
# Get top similar entries
|
344 |
+
relevant_indices = np.argsort(similarities)[-max_entries:][::-1]
|
345 |
+
relevant_entries = []
|
346 |
+
|
347 |
+
for idx in relevant_indices:
|
348 |
+
if similarities[idx] > 0.1: # Minimum relevance threshold
|
349 |
+
query = self.vector_queries[idx]
|
350 |
+
entry = self.entries[query]
|
351 |
+
entry.relevance_score = similarities[idx]
|
352 |
+
relevant_entries.append(entry)
|
353 |
+
|
354 |
+
return relevant_entries
|
355 |
+
|
356 |
except Exception as e:
|
357 |
+
logging.warning(f"Relevance search failed: {e}")
|
358 |
+
|
359 |
+
# Fallback: simple keyword matching
|
360 |
+
relevant = []
|
361 |
+
prompt_words = set(prompt.lower().split())
|
362 |
+
|
363 |
+
for entry in self.entries.values():
|
364 |
+
entry_words = set((entry.query + " " + entry.summary).lower().split())
|
365 |
+
overlap = len(prompt_words.intersection(entry_words))
|
366 |
+
if overlap > 0:
|
367 |
+
entry.relevance_score = overlap / len(prompt_words)
|
368 |
+
relevant.append(entry)
|
369 |
+
|
370 |
+
return sorted(relevant, key=lambda x: x.relevance_score, reverse=True)[:max_entries]
|
371 |
+
|
372 |
+
def cleanup_expired(self, hours: int = 24):
|
373 |
+
"""Remove expired knowledge entries"""
|
374 |
+
expired_queries = [
|
375 |
+
query for query, entry in self.entries.items()
|
376 |
+
if entry.is_expired(hours)
|
377 |
+
]
|
378 |
+
|
379 |
+
for query in expired_queries:
|
380 |
+
del self.entries[query]
|
381 |
+
if self.graph.has_node(query):
|
382 |
+
self.graph.remove_node(query)
|
383 |
+
|
384 |
+
if expired_queries:
|
385 |
+
self._update_vectors()
|
386 |
+
logging.info(f"Cleaned up {len(expired_queries)} expired knowledge entries")
|
387 |
+
|
388 |
+
# ========================================================================================
|
389 |
+
# KNOWLEDGE EVOLUTION ENGINE
|
390 |
+
# ========================================================================================
|
391 |
+
|
392 |
+
class KnowledgeEvolutionEngine:
|
393 |
+
"""Autonomous knowledge acquisition and evolution system"""
|
394 |
+
|
395 |
+
def __init__(self, query_generator, search_engine, summarizer):
|
396 |
+
self.query_generator = query_generator
|
397 |
+
self.search_engine = search_engine
|
398 |
+
self.summarizer = summarizer
|
399 |
+
self.knowledge_graph = IntelligentKnowledgeGraph()
|
400 |
+
self.running = False
|
401 |
+
self.evolution_thread = None
|
402 |
+
|
403 |
+
def start_evolution(self):
|
404 |
+
"""Start the autonomous knowledge evolution process"""
|
405 |
+
if self.running:
|
406 |
+
return
|
407 |
+
|
408 |
+
self.running = True
|
409 |
+
self.evolution_thread = threading.Thread(target=self._evolution_loop, daemon=True)
|
410 |
+
self.evolution_thread.start()
|
411 |
+
logging.info("Knowledge evolution engine started")
|
412 |
+
|
413 |
+
def stop_evolution(self):
|
414 |
+
"""Stop the knowledge evolution process"""
|
415 |
+
self.running = False
|
416 |
+
if self.evolution_thread:
|
417 |
+
self.evolution_thread.join()
|
418 |
+
logging.info("Knowledge evolution engine stopped")
|
419 |
+
|
420 |
+
def _evolution_loop(self):
|
421 |
+
"""Main evolution loop"""
|
422 |
+
while self.running:
|
423 |
+
try:
|
424 |
+
self._evolution_cycle()
|
425 |
+
except Exception as e:
|
426 |
+
logging.error(f"Evolution cycle error: {e}")
|
427 |
+
|
428 |
+
# Wait for next cycle
|
429 |
+
time.sleep(KG_UPDATE_INTERVAL)
|
430 |
+
|
431 |
+
def _evolution_cycle(self):
|
432 |
+
"""Single evolution cycle: query → search → summarize → store"""
|
433 |
+
|
434 |
+
# Generate autonomous query
|
435 |
+
query = self.query_generator.generate_query()
|
436 |
+
logging.info(f"[Evolution] Generated query: {query}")
|
437 |
+
|
438 |
+
# Search for information
|
439 |
+
search_results = self.search_engine.search(query, max_results=8)
|
440 |
+
|
441 |
+
if not search_results:
|
442 |
+
logging.warning(f"[Evolution] No search results for query: {query}")
|
443 |
+
return
|
444 |
+
|
445 |
+
# Combine and process results
|
446 |
+
combined_text = self._combine_search_results(search_results)
|
447 |
+
|
448 |
+
if len(combined_text.strip()) < 100:
|
449 |
+
logging.warning(f"[Evolution] Insufficient content for query: {query}")
|
450 |
+
return
|
451 |
+
|
452 |
+
# Generate summary
|
453 |
+
summary = self._generate_summary(combined_text, query)
|
454 |
+
|
455 |
+
if not summary:
|
456 |
+
logging.warning(f"[Evolution] Summary generation failed for query: {query}")
|
457 |
+
return
|
458 |
+
|
459 |
+
# Create knowledge entry
|
460 |
+
entry = KnowledgeEntry(
|
461 |
+
query=query,
|
462 |
+
content=combined_text[:2000], # Limit content size
|
463 |
+
summary=summary,
|
464 |
+
timestamp=datetime.now(),
|
465 |
+
source_urls=[r.get('url', '') for r in search_results if r.get('url')]
|
466 |
+
)
|
467 |
+
|
468 |
+
# Add to knowledge graph
|
469 |
+
self.knowledge_graph.add_knowledge(entry)
|
470 |
+
|
471 |
+
# Cleanup old knowledge
|
472 |
+
self.knowledge_graph.cleanup_expired()
|
473 |
+
|
474 |
+
logging.info(f"[Evolution] Knowledge updated for query: {query}")
|
475 |
+
|
476 |
+
def _combine_search_results(self, results: List[Dict[str, str]]) -> str:
|
477 |
+
"""Combine search results into coherent text"""
|
478 |
+
combined = []
|
479 |
+
|
480 |
+
for i, result in enumerate(results):
|
481 |
+
title = result.get('title', '').strip()
|
482 |
+
body = result.get('body', '').strip()
|
483 |
+
|
484 |
+
if title and body:
|
485 |
+
combined.append(f"Source {i+1}: {title}\n{body}")
|
486 |
+
elif body:
|
487 |
+
combined.append(f"Source {i+1}: {body}")
|
488 |
+
|
489 |
+
return "\n\n".join(combined)
|
490 |
+
|
491 |
+
def _generate_summary(self, text: str, query: str) -> str:
|
492 |
+
"""Generate intelligent summary of search results"""
|
493 |
+
# Truncate text to fit model limits
|
494 |
+
max_text_length = SMOLLM_MAX_TOKENS - 200 # Reserve tokens for prompt
|
495 |
+
if len(text) > max_text_length:
|
496 |
+
text = text[:max_text_length]
|
497 |
+
|
498 |
+
prompt = f"""Based on the search query "{query}", provide a concise 3-sentence summary of the key information below:
|
499 |
+
|
500 |
+
{text}
|
501 |
+
|
502 |
+
Summary:"""
|
503 |
+
|
504 |
+
try:
|
505 |
+
output = self.summarizer(
|
506 |
+
prompt,
|
507 |
+
max_new_tokens=min(150, SMOLLM_MAX_TOKENS - len(prompt.split())),
|
508 |
+
do_sample=False,
|
509 |
+
temperature=0.3,
|
510 |
+
pad_token_id=self.summarizer.tokenizer.eos_token_id
|
511 |
+
)[0]["generated_text"]
|
512 |
+
|
513 |
+
# Extract summary from output
|
514 |
+
summary = output.replace(prompt, "").strip()
|
515 |
+
summary = re.sub(r'^Summary:\s*', '', summary, flags=re.IGNORECASE)
|
516 |
+
|
517 |
+
# Clean up summary
|
518 |
+
sentences = summary.split('.')
|
519 |
+
clean_sentences = []
|
520 |
+
for sentence in sentences[:3]: # Max 3 sentences
|
521 |
+
sentence = sentence.strip()
|
522 |
+
if sentence and len(sentence) > 10:
|
523 |
+
clean_sentences.append(sentence)
|
524 |
+
|
525 |
+
final_summary = '. '.join(clean_sentences)
|
526 |
+
if final_summary and not final_summary.endswith('.'):
|
527 |
+
final_summary += '.'
|
528 |
+
|
529 |
+
return final_summary if len(final_summary) > 20 else ""
|
530 |
+
|
531 |
+
except Exception as e:
|
532 |
+
logging.error(f"Summary generation error: {e}")
|
533 |
+
return ""
|
534 |
+
|
535 |
+
def get_relevant_knowledge(self, prompt: str) -> str:
|
536 |
+
"""Get relevant knowledge for injection into prompts"""
|
537 |
+
relevant_entries = self.knowledge_graph.find_relevant_knowledge(prompt, max_entries=3)
|
538 |
+
|
539 |
+
if not relevant_entries:
|
540 |
+
return ""
|
541 |
+
|
542 |
+
knowledge_text = "\n\nRelevant recent knowledge:\n"
|
543 |
+
for i, entry in enumerate(relevant_entries, 1):
|
544 |
+
age = datetime.now() - entry.timestamp
|
545 |
+
age_str = f"{age.total_seconds() / 3600:.1f}h ago"
|
546 |
+
knowledge_text += f"{i}. [{entry.query}] ({age_str}): {entry.summary}\n"
|
547 |
+
|
548 |
+
return knowledge_text
|
549 |
+
|
550 |
+
# ========================================================================================
|
551 |
+
# MAIN APPLICATION
|
552 |
+
# ========================================================================================
|
553 |
+
|
554 |
+
app = FastAPI(title="Single Agent Cognitive System", version="1.0.0")
|
555 |
+
|
556 |
+
# Global components
|
557 |
+
search_engine = None
|
558 |
+
knowledge_engine = None
|
559 |
+
generator = None
|
560 |
+
query_generator_model = None
|
561 |
+
summarizer = None
|
562 |
+
|
563 |
+
@app.on_event("startup")
|
564 |
+
async def startup_event():
|
565 |
+
"""Initialize all components"""
|
566 |
+
global search_engine, knowledge_engine, generator, query_generator_model, summarizer
|
567 |
+
|
568 |
+
logging.basicConfig(level=logging.INFO)
|
569 |
+
logging.info("Initializing Single Agent Cognitive System...")
|
570 |
+
|
571 |
+
# Initialize models
|
572 |
+
try:
|
573 |
+
generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
|
574 |
+
query_generator_model = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
|
575 |
+
summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
|
576 |
+
logging.info("Models loaded successfully")
|
577 |
+
except Exception as e:
|
578 |
+
logging.error(f"Model loading failed: {e}")
|
579 |
+
raise
|
580 |
+
|
581 |
+
# Initialize search engine
|
582 |
+
search_engine = MultiSearchEngine()
|
583 |
+
|
584 |
+
# Initialize query generator
|
585 |
+
query_generator = AutonomousQueryGenerator(query_generator_model)
|
586 |
+
|
587 |
+
# Initialize knowledge evolution engine
|
588 |
+
knowledge_engine = KnowledgeEvolutionEngine(
|
589 |
+
query_generator, search_engine, summarizer
|
590 |
+
)
|
591 |
+
|
592 |
+
# Start autonomous evolution
|
593 |
+
knowledge_engine.start_evolution()
|
594 |
+
|
595 |
+
logging.info("Single Agent Cognitive System initialized successfully")
|
596 |
+
|
597 |
+
@app.on_event("shutdown")
|
598 |
+
async def shutdown_event():
|
599 |
+
"""Cleanup on shutdown"""
|
600 |
+
if knowledge_engine:
|
601 |
+
knowledge_engine.stop_evolution()
|
602 |
+
|
603 |
+
# ========================================================================================
|
604 |
+
# API ENDPOINTS
|
605 |
+
# ========================================================================================
|
606 |
+
|
607 |
+
@app.post("/generate")
|
608 |
+
async def generate_text(input_data: ModelInput):
|
609 |
+
"""Generate text with knowledge injection"""
|
610 |
+
try:
|
611 |
+
# Inject relevant knowledge
|
612 |
+
enriched_prompt = input_data.prompt
|
613 |
+
if knowledge_engine:
|
614 |
+
relevant_knowledge = knowledge_engine.get_relevant_knowledge(input_data.prompt)
|
615 |
+
if relevant_knowledge:
|
616 |
+
enriched_prompt = input_data.prompt + relevant_knowledge
|
617 |
+
|
618 |
+
# Generate response
|
619 |
+
output = generator(
|
620 |
+
enriched_prompt,
|
621 |
+
max_new_tokens=min(input_data.max_new_tokens, DEEPSEEK_MAX_TOKENS),
|
622 |
+
do_sample=True,
|
623 |
+
temperature=0.7,
|
624 |
+
top_p=0.9,
|
625 |
+
pad_token_id=generator.tokenizer.eos_token_id
|
626 |
+
)[0]["generated_text"]
|
627 |
+
|
628 |
+
return {"generated_text": output, "enriched_prompt": enriched_prompt}
|
629 |
+
|
630 |
+
except Exception as e:
|
631 |
+
raise HTTPException(status_code=500, detail=str(e))
|
632 |
+
|
633 |
@app.post("/generate/stream")
|
634 |
+
async def generate_stream(input_data: ModelInput):
|
635 |
+
"""Stream text generation with knowledge injection"""
|
636 |
q = queue.Queue()
|
637 |
+
|
638 |
def run_generation():
|
639 |
try:
|
640 |
+
# Inject relevant knowledge
|
641 |
+
enriched_prompt = input_data.prompt
|
642 |
+
if knowledge_engine:
|
643 |
+
relevant_knowledge = knowledge_engine.get_relevant_knowledge(input_data.prompt)
|
644 |
+
if relevant_knowledge:
|
645 |
+
enriched_prompt = input_data.prompt + relevant_knowledge
|
646 |
+
|
647 |
+
# Set up streaming
|
648 |
+
def token_callback(token_ids):
|
649 |
if hasattr(token_ids, "tolist"):
|
650 |
token_ids = token_ids.tolist()
|
651 |
+
text = generator.tokenizer.decode(token_ids, skip_special_tokens=True)
|
652 |
q.put(text)
|
653 |
+
|
654 |
+
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
|
655 |
+
streamer.put = token_callback
|
656 |
+
|
657 |
+
# Generate with streaming
|
658 |
generator(
|
659 |
enriched_prompt,
|
660 |
+
max_new_tokens=min(input_data.max_new_tokens, DEEPSEEK_MAX_TOKENS),
|
661 |
+
do_sample=True,
|
662 |
+
temperature=0.7,
|
663 |
+
top_p=0.9,
|
664 |
+
streamer=streamer,
|
665 |
+
pad_token_id=generator.tokenizer.eos_token_id
|
666 |
)
|
667 |
+
|
668 |
except Exception as e:
|
669 |
q.put(f"[ERROR] {e}")
|
670 |
finally:
|
671 |
+
q.put(None) # End signal
|
672 |
+
|
673 |
+
# Start generation in background
|
674 |
threading.Thread(target=run_generation, daemon=True).start()
|
675 |
+
|
676 |
async def event_generator():
|
677 |
while True:
|
678 |
+
try:
|
679 |
+
token = q.get(timeout=30) # 30 second timeout
|
680 |
+
if token is None:
|
681 |
+
break
|
682 |
+
yield token
|
683 |
+
except queue.Empty:
|
684 |
+
yield "[TIMEOUT]"
|
685 |
break
|
686 |
+
|
|
|
687 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
688 |
|
689 |
+
@app.get("/knowledge")
|
690 |
+
async def get_knowledge_graph():
|
691 |
+
"""Get current knowledge graph state"""
|
692 |
+
if not knowledge_engine:
|
693 |
+
return {"error": "Knowledge engine not initialized"}
|
694 |
+
|
695 |
+
kg = knowledge_engine.knowledge_graph
|
696 |
+
return {
|
697 |
+
"total_entries": len(kg.entries),
|
698 |
+
"entries": [
|
699 |
+
{
|
700 |
+
"query": entry.query,
|
701 |
+
"summary": entry.summary,
|
702 |
+
"timestamp": entry.timestamp.isoformat(),
|
703 |
+
"relevance_score": entry.relevance_score,
|
704 |
+
"sources_count": len(entry.source_urls)
|
705 |
+
}
|
706 |
+
for entry in list(kg.entries.values())[-20:] # Last 20 entries
|
707 |
+
]
|
708 |
+
}
|
709 |
+
|
710 |
+
@app.get("/knowledge/search")
|
711 |
+
async def search_knowledge(query: str):
|
712 |
+
"""Search knowledge graph"""
|
713 |
+
if not knowledge_engine:
|
714 |
+
return {"error": "Knowledge engine not initialized"}
|
715 |
+
|
716 |
+
relevant_entries = knowledge_engine.knowledge_graph.find_relevant_knowledge(query, max_entries=10)
|
717 |
+
|
718 |
+
return {
|
719 |
+
"query": query,
|
720 |
+
"results": [
|
721 |
+
{
|
722 |
+
"query": entry.query,
|
723 |
+
"summary": entry.summary,
|
724 |
+
"relevance_score": entry.relevance_score,
|
725 |
+
"timestamp": entry.timestamp.isoformat(),
|
726 |
+
"age_hours": (datetime.now() - entry.timestamp).total_seconds() / 3600
|
727 |
+
}
|
728 |
+
for entry in relevant_entries
|
729 |
+
]
|
730 |
+
}
|
731 |
+
|
732 |
+
@app.post("/knowledge/force-update")
|
733 |
+
async def force_knowledge_update():
|
734 |
+
"""Force a knowledge update cycle"""
|
735 |
+
if not knowledge_engine:
|
736 |
+
return {"error": "Knowledge engine not initialized"}
|
737 |
+
|
738 |
try:
|
739 |
+
knowledge_engine._evolution_cycle()
|
740 |
+
return {"status": "Knowledge update completed"}
|
|
|
|
|
|
|
|
|
|
|
741 |
except Exception as e:
|
742 |
+
return {"error": str(e)}
|
743 |
|
744 |
+
@app.get("/status")
|
745 |
+
async def get_system_status():
|
746 |
+
"""Get system status"""
|
747 |
+
status = {
|
748 |
+
"models_loaded": generator is not None,
|
749 |
+
"search_engine_active": search_engine is not None,
|
750 |
+
"knowledge_engine_running": knowledge_engine is not None and knowledge_engine.running,
|
751 |
+
"knowledge_entries": 0,
|
752 |
+
"uptime_seconds": time.time() - startup_time if 'startup_time' in globals() else 0
|
753 |
+
}
|
754 |
+
|
755 |
+
if knowledge_engine:
|
756 |
+
status["knowledge_entries"] = len(knowledge_engine.knowledge_graph.entries)
|
757 |
+
|
758 |
+
return status
|
759 |
|
|
|
|
|
|
|
760 |
@app.get("/")
|
761 |
async def root():
|
762 |
+
"""Root endpoint"""
|
763 |
+
return {
|
764 |
+
"name": "Single Agent Cognitive System",
|
765 |
+
"description": "Autonomous knowledge evolution with intelligent query generation",
|
766 |
+
"version": "1.0.0",
|
767 |
+
"features": [
|
768 |
+
"Autonomous query generation",
|
769 |
+
"Multi-engine search with fallbacks",
|
770 |
+
"Intelligent knowledge graph",
|
771 |
+
"Semantic relevance matching",
|
772 |
+
"Real-time knowledge injection",
|
773 |
+
"Streaming text generation"
|
774 |
+
]
|
775 |
+
}
|
776 |
+
|
777 |
+
# Initialize startup time
|
778 |
+
startup_time = time.time()
|
779 |
+
|
780 |
+
if __name__ == "__main__":
|
781 |
+
import uvicorn
|
782 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|