|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
class ModelInput(BaseModel): |
|
prompt: str |
|
max_new_tokens: int = 50 |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
|
|
|
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
@app.post("/generate") |
|
|
|
def generate_response(model, tokenizer, instruction): |
|
"""Generate a response from the model based on an instruction.""" |
|
messages = [{"role": "user", "content": instruction}] |
|
input_text = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
inputs = tokenizer.encode(input_text, return_tensors="pt") |
|
outputs = model.generate( |
|
inputs, max_new_tokens=128, temperature=0.2, top_p=0.9, do_sample=True |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
|
|
def generate_text(input: ModelInput): |
|
try: |
|
response = generate_response(model, tokenizer, ModelInput) |
|
return response} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/") |
|
def root(): |
|
return {"message": "Welcome to the Hugging Face Model API!"} |
|
|