|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import pipeline, TextStreamer |
|
import torch |
|
|
|
class ModelInput(BaseModel): |
|
prompt: str |
|
max_new_tokens: int = 128000 |
|
|
|
app = FastAPI() |
|
|
|
|
|
generator = pipeline( |
|
"text-generation", |
|
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
|
device="cpu" |
|
) |
|
|
|
|
|
streamer = TextStreamer(generator.tokenizer, skip_prompt=True) |
|
|
|
def generate_response(prompt: str, max_new_tokens: int = 64000): |
|
try: |
|
messages = [{"role": "user", "content": prompt}] |
|
output = generator(messages, max_new_tokens=max_new_tokens, do_sample=False, streamer=streamer) |
|
return output[0]["generated_text"][-1]["content"] |
|
except Exception as e: |
|
raise ValueError(f"Error generating response: {e}") |
|
|
|
@app.post("/generate") |
|
async def generate_text(input: ModelInput): |
|
try: |
|
response = generate_response( |
|
prompt=input.prompt, |
|
max_new_tokens=input.max_new_tokens |
|
) |
|
return {"generated_text": response} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "Welcome to the Streaming Model API!"} |
|
|