File size: 1,522 Bytes
ac744bd 9e88fc4 ad662e5 9e88fc4 0640556 bd5bf73 042f554 ef3b7e0 9e88fc4 96dd1aa ef3b7e0 9e88fc4 96dd1aa 9e88fc4 96dd1aa af84c9d d40722d d80aad7 d40722d ef3b7e0 d80aad7 ef3b7e0 9e88fc4 d80aad7 9e88fc4 ef3b7e0 1542c74 9e88fc4 5d81cd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
#import gradio as gr
#gr.Interface.load("models/pyannote/speaker-diarization").launch()
from fastapi import FastAPI, UploadFile
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
#from pyannote.audio import Pipeline
from transformers import pipeline # le framework de huggingface
#from datasets import load_dataset, Audio # ça c'est pour entrainer mon modele
app = FastAPI()
#pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
#deepneurones = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour. pipeline() telecharge dans un cache local le modele deeplearning
deepneurones= pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
@app.get("/healthcheck")
def healthcheck():
#output = pipe_flan(input)
#pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
#pipeline("file.wav")
return {"output":"OK"}
@app.get("/stt")
async def stt(file: str = UploadFile(...)):
file_content = base64.b64decode(file)
contents = await file.read()
dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
results = deepneurones(file_content)
return {"output":results}
#app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/home/user/app/index.html", media_type="text/html")
|