Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "78ab80c4-8e25-4464-b710-087d385349fe",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/opt/homebrew/Cellar/jupyterlab/4.4.0/libexec/lib/python3.13/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"source": [
|
19 |
+
"import gradio as gr\n",
|
20 |
+
"from PIL import Image\n",
|
21 |
+
"import torch\n",
|
22 |
+
"import numpy as np\n",
|
23 |
+
"import faiss\n",
|
24 |
+
"import json\n",
|
25 |
+
"\n",
|
26 |
+
"from transformers import (\n",
|
27 |
+
" BlipProcessor,\n",
|
28 |
+
" BlipForConditionalGeneration,\n",
|
29 |
+
" CLIPProcessor,\n",
|
30 |
+
" CLIPModel\n",
|
31 |
+
")\n",
|
32 |
+
"from datasets import load_dataset"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 3,
|
38 |
+
"id": "9e6fe9c1-df25-41ad-ab27-f6fc20ecb956",
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"wikiart_dataset = load_dataset(\"huggan/wikiart\", split=\"train\")\n",
|
43 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"mps\" if torch.backends.mps.is_available() else \"cpu\")"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 4,
|
49 |
+
"id": "b9da3ff0-62e6-4686-af9f-38183f675788",
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [
|
52 |
+
{
|
53 |
+
"name": "stderr",
|
54 |
+
"output_type": "stream",
|
55 |
+
"text": [
|
56 |
+
"Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.\n"
|
57 |
+
]
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"source": [
|
61 |
+
"blip_processor = BlipProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")\n",
|
62 |
+
"blip_model = BlipForConditionalGeneration.from_pretrained(\"Salesforce/blip-image-captioning-base\").to(device).eval()"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": 5,
|
68 |
+
"id": "12d9402a-fdbe-4ade-99ed-26f5d7f9ccfd",
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"clip_model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\").to(device).eval()\n",
|
73 |
+
"clip_processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 6,
|
79 |
+
"id": "d4f5e7b2-c873-4495-8ad1-9e32f4f1fbe1",
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"with open(\"../create_embeddings/wikiart_embeddings.json\", \"r\", encoding=\"utf-8\") as f:\n",
|
84 |
+
" data = json.load(f)"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 7,
|
90 |
+
"id": "87bc4121-f316-4769-bf5d-197db30fe2a3",
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"image_index = faiss.read_index(\"../create_index/image_index.faiss\")\n",
|
95 |
+
"text_index = faiss.read_index(\"../create_index/text_index.faiss\")"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 8,
|
101 |
+
"id": "b41d1e5c-d606-4501-a22c-3cde576361d7",
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"def generate_caption(image: Image.Image):\n",
|
106 |
+
" inputs = blip_processor(image, return_tensors=\"pt\").to(device)\n",
|
107 |
+
" with torch.no_grad():\n",
|
108 |
+
" caption_ids = blip_model.generate(**inputs)\n",
|
109 |
+
" caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True)\n",
|
110 |
+
" return caption"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 9,
|
116 |
+
"id": "263c8672-f4b4-46b7-abf0-483ccfb83c86",
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"def get_clip_text_embedding(text):\n",
|
121 |
+
" inputs = clip_processor(text=[text], return_tensors=\"pt\", padding=True).to(device)\n",
|
122 |
+
" with torch.no_grad():\n",
|
123 |
+
" features = clip_model.get_text_features(**inputs)\n",
|
124 |
+
" features = features.cpu().numpy().astype(\"float32\")\n",
|
125 |
+
" faiss.normalize_L2(features)\n",
|
126 |
+
" return features"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 10,
|
132 |
+
"id": "34827bd8-e0da-4252-b168-3c79f2d2fb02",
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"def get_clip_image_embedding(image):\n",
|
137 |
+
" inputs = clip_processor(images=image, return_tensors=\"pt\").to(device)\n",
|
138 |
+
" with torch.no_grad():\n",
|
139 |
+
" features = clip_model.get_image_features(**inputs)\n",
|
140 |
+
" features = features.cpu().numpy().astype(\"float32\")\n",
|
141 |
+
" faiss.normalize_L2(features)\n",
|
142 |
+
" return features"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": 11,
|
148 |
+
"id": "ec6399ac-a40d-49f7-9831-3085fca484c9",
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"def get_results_with_images(embedding, index, top_k=2):\n",
|
153 |
+
" D, I = index.search(embedding, top_k)\n",
|
154 |
+
" results = []\n",
|
155 |
+
" for idx in I[0]:\n",
|
156 |
+
" item = data[idx]\n",
|
157 |
+
" img_id = int(item[\"id\"])\n",
|
158 |
+
" try:\n",
|
159 |
+
" img = wikiart_dataset[img_id][\"image\"]\n",
|
160 |
+
" except IndexError:\n",
|
161 |
+
" continue\n",
|
162 |
+
" caption = f\"ID: {item['id']}\\n{item['caption']}\"\n",
|
163 |
+
" results.append((img, caption))\n",
|
164 |
+
" return results"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": 12,
|
170 |
+
"id": "76adeb1c-85d6-4e53-9c93-a312c21b71b8",
|
171 |
+
"metadata": {},
|
172 |
+
"outputs": [],
|
173 |
+
"source": [
|
174 |
+
"def search_similar_images(image: Image.Image):\n",
|
175 |
+
" caption = generate_caption(image)\n",
|
176 |
+
"\n",
|
177 |
+
" text_emb = get_clip_text_embedding(caption)\n",
|
178 |
+
" image_emb = get_clip_image_embedding(image)\n",
|
179 |
+
"\n",
|
180 |
+
" text_results = get_results_with_images(text_emb, text_index)\n",
|
181 |
+
" image_results = get_results_with_images(image_emb, image_index)\n",
|
182 |
+
"\n",
|
183 |
+
" return caption, text_results, image_results"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": 13,
|
189 |
+
"id": "da86df12-a996-4d1d-ae42-354984cf6dc2",
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [
|
192 |
+
{
|
193 |
+
"name": "stdout",
|
194 |
+
"output_type": "stream",
|
195 |
+
"text": [
|
196 |
+
"* Running on local URL: http://127.0.0.1:7862\n",
|
197 |
+
"* To create a public link, set `share=True` in `launch()`.\n"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"data": {
|
202 |
+
"text/html": [
|
203 |
+
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
204 |
+
],
|
205 |
+
"text/plain": [
|
206 |
+
"<IPython.core.display.HTML object>"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
"metadata": {},
|
210 |
+
"output_type": "display_data"
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"text/plain": []
|
215 |
+
},
|
216 |
+
"execution_count": 13,
|
217 |
+
"metadata": {},
|
218 |
+
"output_type": "execute_result"
|
219 |
+
}
|
220 |
+
],
|
221 |
+
"source": [
|
222 |
+
"demo = gr.Interface(\n",
|
223 |
+
" fn=search_similar_images,\n",
|
224 |
+
" inputs=gr.Image(label=\"Загрузите изображение\", type=\"pil\"),\n",
|
225 |
+
" outputs=[\n",
|
226 |
+
" gr.Textbox(label=\"📜 Сгенерированное описание\"),\n",
|
227 |
+
" gr.Gallery(label=\"🔍 Похожие по описанию (CLIP)\", height=\"auto\", columns=2),\n",
|
228 |
+
" gr.Gallery(label=\"🎨 Похожие по изображению (CLIP)\", height=\"auto\", columns=2)\n",
|
229 |
+
" ],\n",
|
230 |
+
" title=\"🎨 Semantic WikiArt Search (BLIP + CLIP)\",\n",
|
231 |
+
" description=\"Загрузите изображение. Модель BLIP сгенерирует описание, а CLIP найдёт похожие картины по тексту и изображению.\"\n",
|
232 |
+
")\n",
|
233 |
+
"\n",
|
234 |
+
"demo.launch()"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": 14,
|
240 |
+
"id": "55fbac06-4781-4074-a1e6-26ff758bbfe0",
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"name": "stdout",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
"Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n",
|
248 |
+
"----\n"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"name": "stderr",
|
253 |
+
"output_type": "stream",
|
254 |
+
"text": [
|
255 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
256 |
+
"To disable this warning, you can either:\n",
|
257 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
258 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"name": "stdout",
|
263 |
+
"output_type": "stream",
|
264 |
+
"text": [
|
265 |
+
"* Running on public URL: https://ba46916423948a3a69.gradio.live\n",
|
266 |
+
"\n",
|
267 |
+
"This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"data": {
|
272 |
+
"text/html": [
|
273 |
+
"<div><iframe src=\"https://ba46916423948a3a69.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
274 |
+
],
|
275 |
+
"text/plain": [
|
276 |
+
"<IPython.core.display.HTML object>"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
"metadata": {},
|
280 |
+
"output_type": "display_data"
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"data": {
|
284 |
+
"text/plain": []
|
285 |
+
},
|
286 |
+
"execution_count": 14,
|
287 |
+
"metadata": {},
|
288 |
+
"output_type": "execute_result"
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"source": [
|
292 |
+
"demo.launch(server_name=\"0.0.0.0\", server_port=7860, share=True)\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": null,
|
298 |
+
"id": "c44447c3-0709-4419-a6a4-fc451f80702a",
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [],
|
301 |
+
"source": []
|
302 |
+
}
|
303 |
+
],
|
304 |
+
"metadata": {
|
305 |
+
"kernelspec": {
|
306 |
+
"display_name": "Python 3 (ipykernel)",
|
307 |
+
"language": "python",
|
308 |
+
"name": "python3"
|
309 |
+
},
|
310 |
+
"language_info": {
|
311 |
+
"codemirror_mode": {
|
312 |
+
"name": "ipython",
|
313 |
+
"version": 3
|
314 |
+
},
|
315 |
+
"file_extension": ".py",
|
316 |
+
"mimetype": "text/x-python",
|
317 |
+
"name": "python",
|
318 |
+
"nbconvert_exporter": "python",
|
319 |
+
"pygments_lexer": "ipython3",
|
320 |
+
"version": "3.13.3"
|
321 |
+
}
|
322 |
+
},
|
323 |
+
"nbformat": 4,
|
324 |
+
"nbformat_minor": 5
|
325 |
+
}
|