LeBuH commited on
Commit
40f110b
·
verified ·
1 Parent(s): a05ebfa

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -0
app.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import torch
4
+ import numpy as np
5
+ import faiss
6
+
7
+ from transformers import (
8
+ GitProcessor,
9
+ GitForCausalLM,
10
+ AutoTokenizer,
11
+ AutoModelForCausalLM,
12
+ CLIPProcessor,
13
+ CLIPModel
14
+ )
15
+ from sentence_transformers import SentenceTransformer
16
+ from datasets import load_dataset
17
+
18
+ device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
19
+
20
+ tokenizer_llama = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
21
+ model_llama = AutoModelForCausalLM.from_pretrained(
22
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
23
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
24
+ device_map="auto"
25
+ ).eval()
26
+
27
+ text_encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
28
+
29
+ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device).eval()
30
+ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
31
+
32
+ # Загрузка только первых 10000 изображений через streaming
33
+ MAX_IMAGES = 10_000
34
+ dataset_stream = load_dataset("huggan/wikiart", split="train", streaming=True)
35
+ first_10000 = [x for i, x in enumerate(dataset_stream) if i < MAX_IMAGES]
36
+
37
+ image_index = faiss.read_index("image_index_llama.faiss")
38
+ text_index = faiss.read_index("text_index_llama.faiss")
39
+
40
+ def clean_caption(text):
41
+ return text.replace("[ unused0 ]", "").strip()
42
+
43
+ def generate_captions(image: Image.Image):
44
+ inputs = git_processor(images=image, return_tensors="pt")["pixel_values"].to(device)
45
+
46
+ captions = []
47
+ with torch.no_grad():
48
+ deterministic_ids = git_model.generate(
49
+ pixel_values=inputs,
50
+ max_new_tokens=30,
51
+ do_sample=False
52
+ )
53
+ captions.append(clean_caption(git_processor.tokenizer.decode(deterministic_ids[0], skip_special_tokens=True)))
54
+
55
+ sampled_ids = git_model.generate(
56
+ pixel_values=inputs,
57
+ max_new_tokens=30,
58
+ do_sample=True,
59
+ top_k=100,
60
+ temperature=0.8,
61
+ num_return_sequences=2
62
+ )
63
+ sampled = git_processor.tokenizer.batch_decode(sampled_ids, skip_special_tokens=True)
64
+ captions.extend([clean_caption(c) for c in sampled])
65
+
66
+ return captions
67
+
68
+ def refine_caption(base, desc1, desc2):
69
+ prompt = f"""
70
+ Given the base caption that is true and factual:
71
+ \"{base}\"
72
+
73
+ And two descriptive captions:
74
+ 1) {desc1}
75
+ 2) {desc2}
76
+
77
+ Write a short, coherent description that is faithful to the base caption but incorporates descriptive elements from captions 1 and 2 without contradicting the original meaning.
78
+ """
79
+ inputs = tokenizer_llama(prompt, return_tensors="pt").to(model_llama.device)
80
+ with torch.no_grad():
81
+ output = model_llama.generate(**inputs, max_new_tokens=100, do_sample=False)
82
+ text = tokenizer_llama.decode(output[0], skip_special_tokens=True)
83
+ answer = text[len(prompt):].strip()
84
+ for prefix in ["Example:", "example:"]:
85
+ if answer.startswith(prefix):
86
+ answer = answer[len(prefix):].strip()
87
+ return answer
88
+
89
+ def get_text_embedding(text):
90
+ emb = text_encoder.encode([text], normalize_embeddings=False).astype("float32")
91
+ faiss.normalize_L2(emb)
92
+ return emb
93
+
94
+ def get_image_embedding(image):
95
+ inputs = clip_processor(images=image, return_tensors="pt").to(device)
96
+ with torch.no_grad():
97
+ image_features = clip_model.get_image_features(**inputs)
98
+ emb = image_features.cpu().numpy().astype("float32")
99
+ faiss.normalize_L2(emb)
100
+ return emb
101
+
102
+ def get_results_with_images(embedding, index, top_k=2):
103
+ D, I = index.search(embedding, top_k)
104
+ results = []
105
+ for idx in I[0]:
106
+ if idx >= MAX_IMAGES:
107
+ continue
108
+ try:
109
+ item = first_10000[idx]
110
+ img = item["image"]
111
+ caption = item["caption"]
112
+ caption_text = f"ID: {idx}\n{caption}"
113
+ results.append((img, caption_text))
114
+ except IndexError:
115
+ continue
116
+ return results
117
+
118
+ def search_similar_images(image: Image.Image):
119
+ captions = generate_captions(image)
120
+ refined = refine_caption(captions[0], captions[1], captions[2])
121
+
122
+ text_emb = get_text_embedding(refined)
123
+ image_emb = get_image_embedding(image)
124
+
125
+ text_results = get_results_with_images(text_emb, text_index)
126
+ image_results = get_results_with_images(image_emb, image_index)
127
+
128
+ return refined, text_results, image_results
129
+
130
+ demo = gr.Interface(
131
+ fn=search_similar_images,
132
+ inputs=gr.Image(label="Загрузите изображение", type="pil"),
133
+ outputs=[
134
+ gr.Textbox(label="📜 Сгенерированное описание"),
135
+ gr.Gallery(label="🔍 Похожие по описанию (caption)", height="auto", columns=2),
136
+ gr.Gallery(label="🎨 Похожие по изображению (CLIP)", height="auto", columns=2)
137
+ ],
138
+ title="🎨 Semantic WikiArt Search",
139
+ description="Загрузите изображение. Модель сгенерирует описание, получит эмбеддинги и найдёт похожие картины по описанию и изображению."
140
+ )
141
+
142
+ demo.launch()