import gradio as gr from PIL import Image import torch import numpy as np import faiss from transformers import ( GitProcessor, GitForCausalLM, AutoTokenizer, AutoModelForCausalLM, CLIPProcessor, CLIPModel ) from sentence_transformers import SentenceTransformer from datasets import load_dataset device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu") tokenizer_llama = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") model_llama = AutoModelForCausalLM.from_pretrained( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" ).eval() text_encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device).eval() clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # Загрузка только первых 10000 изображений через streaming MAX_IMAGES = 10_000 dataset_stream = load_dataset("huggan/wikiart", split="train", streaming=True) first_10000 = [x for i, x in enumerate(dataset_stream) if i < MAX_IMAGES] image_index = faiss.read_index("image_index_llama.faiss") text_index = faiss.read_index("text_index_llama.faiss") def clean_caption(text): return text.replace("[ unused0 ]", "").strip() def generate_captions(image: Image.Image): inputs = git_processor(images=image, return_tensors="pt")["pixel_values"].to(device) captions = [] with torch.no_grad(): deterministic_ids = git_model.generate( pixel_values=inputs, max_new_tokens=30, do_sample=False ) captions.append(clean_caption(git_processor.tokenizer.decode(deterministic_ids[0], skip_special_tokens=True))) sampled_ids = git_model.generate( pixel_values=inputs, max_new_tokens=30, do_sample=True, top_k=100, temperature=0.8, num_return_sequences=2 ) sampled = git_processor.tokenizer.batch_decode(sampled_ids, skip_special_tokens=True) captions.extend([clean_caption(c) for c in sampled]) return captions def refine_caption(base, desc1, desc2): prompt = f""" Given the base caption that is true and factual: \"{base}\" And two descriptive captions: 1) {desc1} 2) {desc2} Write a short, coherent description that is faithful to the base caption but incorporates descriptive elements from captions 1 and 2 without contradicting the original meaning. """ inputs = tokenizer_llama(prompt, return_tensors="pt").to(model_llama.device) with torch.no_grad(): output = model_llama.generate(**inputs, max_new_tokens=100, do_sample=False) text = tokenizer_llama.decode(output[0], skip_special_tokens=True) answer = text[len(prompt):].strip() for prefix in ["Example:", "example:"]: if answer.startswith(prefix): answer = answer[len(prefix):].strip() return answer def get_text_embedding(text): emb = text_encoder.encode([text], normalize_embeddings=False).astype("float32") faiss.normalize_L2(emb) return emb def get_image_embedding(image): inputs = clip_processor(images=image, return_tensors="pt").to(device) with torch.no_grad(): image_features = clip_model.get_image_features(**inputs) emb = image_features.cpu().numpy().astype("float32") faiss.normalize_L2(emb) return emb def get_results_with_images(embedding, index, top_k=2): D, I = index.search(embedding, top_k) results = [] for idx in I[0]: if idx >= MAX_IMAGES: continue try: item = first_10000[idx] img = item["image"] caption = item["caption"] caption_text = f"ID: {idx}\n{caption}" results.append((img, caption_text)) except IndexError: continue return results def search_similar_images(image: Image.Image): captions = generate_captions(image) refined = refine_caption(captions[0], captions[1], captions[2]) text_emb = get_text_embedding(refined) image_emb = get_image_embedding(image) text_results = get_results_with_images(text_emb, text_index) image_results = get_results_with_images(image_emb, image_index) return refined, text_results, image_results demo = gr.Interface( fn=search_similar_images, inputs=gr.Image(label="Загрузите изображение", type="pil"), outputs=[ gr.Textbox(label="📜 Сгенерированное описание"), gr.Gallery(label="🔍 Похожие по описанию (caption)", height="auto", columns=2), gr.Gallery(label="🎨 Похожие по изображению (CLIP)", height="auto", columns=2) ], title="🎨 Semantic WikiArt Search", description="Загрузите изображение. Модель сгенерирует описание, получит эмбеддинги и найдёт похожие картины по описанию и изображению." ) demo.launch()