Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoModelForSequenceClassification
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Initialize sentiment analysis model and tokenizer
|
6 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
7 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
8 |
+
sentiment_model.eval()
|
9 |
+
|
10 |
+
# Initialize stock identification model and tokenizer
|
11 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
|
12 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
|
13 |
+
ner_model.eval()
|
14 |
+
|
15 |
+
# def get_advice(sentiment_label, stocks_mentioned):
|
16 |
+
# # Add your own logic for providing advice based on sentiment and stocks mentioned
|
17 |
+
# if sentiment_label == "Positive":
|
18 |
+
# advice = "Positive sentiment. Consider taking advantage of positive market trends."
|
19 |
+
# elif sentiment_label == "Negative":
|
20 |
+
# if stocks_mentioned:
|
21 |
+
# advice = f"Negative sentiment. Consider re-evaluating your position on stocks: {', '.join(stocks_mentioned)}."
|
22 |
+
# else:
|
23 |
+
# advice = "Negative sentiment. Consider monitoring the market for potential impacts."
|
24 |
+
# else:
|
25 |
+
# advice = "Neutral sentiment. The market may not be strongly influenced. Monitor for changes."
|
26 |
+
|
27 |
+
# return advice
|
28 |
+
|
29 |
+
def predict_sentiment_and_stock_info(headline):
|
30 |
+
# Sentiment Analysis
|
31 |
+
sentiment_inputs = sentiment_tokenizer(headline, padding=True, truncation=True, return_tensors='pt')
|
32 |
+
with torch.no_grad():
|
33 |
+
sentiment_outputs = sentiment_model(**sentiment_inputs)
|
34 |
+
# sentiment_prediction = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)
|
35 |
+
|
36 |
+
# pos, neg, neutr = sentiment_prediction[:, 0].item(), sentiment_prediction[:, 1].item(), sentiment_prediction[:, 2].item()
|
37 |
+
sentiment_label = "Positive" if pos > neg and pos > neutr else "Negative" if neg > pos and neg > neutr else "Neutral"
|
38 |
+
|
39 |
+
# Named Entity Recognition (NER)
|
40 |
+
ner_inputs = ner_tokenizer(headline, return_tensors="pt")
|
41 |
+
with torch.no_grad():
|
42 |
+
ner_outputs = ner_model(**ner_inputs)
|
43 |
+
|
44 |
+
# # Identify stocks mentioned in the headline
|
45 |
+
# ner_predictions = torch.nn.functional.softmax(ner_outputs.logits, dim=-1).argmax(2)
|
46 |
+
# tokens = ner_tokenizer.convert_ids_to_tokens(ner_inputs['input_ids'][0].tolist()) # Use ner_inputs here
|
47 |
+
# entities = ner_tokenizer.convert_ids_to_tokens(ner_predictions[0].tolist())
|
48 |
+
# stocks_mentioned = [tokens[i] for i, entity in enumerate(entities) if entity.startswith("B")]
|
49 |
+
|
50 |
+
# # Advice based on sentiment and identified stocks
|
51 |
+
# advice = get_advice(sentiment_label, stocks_mentioned)
|
52 |
+
|
53 |
+
# return sentiment_label, advice
|
54 |
+
return sentiment_label
|
55 |
+
|
56 |
+
# Gradio Interface
|
57 |
+
'''iface = gr.Interface(
|
58 |
+
fn=predict_sentiment_and_stock_info,
|
59 |
+
inputs="text",
|
60 |
+
outputs=["text", "text"],
|
61 |
+
live=True,
|
62 |
+
title="Financial News Sentiment and Stock Analysis",
|
63 |
+
description="Enter a financial news headline to analyze its sentiment, identify mentioned stocks, and get advice on how to proceed."
|
64 |
+
)
|
65 |
+
iface.launch()'''
|
66 |
+
|
67 |
+
# Gradio Interface
|
68 |
+
iface = gr.Interface(
|
69 |
+
fn=predict_sentiment_and_stock_info,
|
70 |
+
inputs=[gr.Textbox(lines=2, label="Financial Statement")],
|
71 |
+
outputs=[
|
72 |
+
gr.Textbox(label="Sentiment"),
|
73 |
+
# gr.Textbox(label="Advice")
|
74 |
+
],
|
75 |
+
live=True,
|
76 |
+
title="Financial Content Sentiment Analysis",
|
77 |
+
description="Enter a financial statement to analyze its sentiment."
|
78 |
+
)
|
79 |
+
|
80 |
+
iface.launch()
|