File size: 17,575 Bytes
d0dd276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import json
import time
import math
import asyncio
from typing import List, Dict, Any, Callable, Union, Optional
from fastapi.responses import JSONResponse, StreamingResponse

from google.auth.transport.requests import Request as AuthRequest
from google.genai import types 
from google import genai # Needed if _execute_gemini_call uses genai.Client directly
from app.vertex.message_processing import parse_gemini_response_for_reasoning_and_content
# Local module imports
from app.vertex.models import OpenAIRequest, OpenAIMessage # Changed from relative
from app.vertex.message_processing import deobfuscate_text, convert_to_openai_format, convert_chunk_to_openai, create_final_chunk # Changed from relative
import app.vertex.config as app_config # Changed from relative
from app.config import settings # 导入settings模块

def create_openai_error_response(status_code: int, message: str, error_type: str) -> Dict[str, Any]:
    return {
        "error": {
            "message": message,
            "type": error_type,
            "code": status_code,
            "param": None,
        }
    }

def create_generation_config(request: OpenAIRequest) -> Dict[str, Any]:
    config = {}
    if request.temperature is not None: config["temperature"] = request.temperature
    if request.max_tokens is not None: config["max_output_tokens"] = request.max_tokens
    if request.top_p is not None: config["top_p"] = request.top_p
    if request.top_k is not None: config["top_k"] = request.top_k
    if request.stop is not None: config["stop_sequences"] = request.stop
    if request.seed is not None: config["seed"] = request.seed
    if request.presence_penalty is not None: config["presence_penalty"] = request.presence_penalty
    if request.frequency_penalty is not None: config["frequency_penalty"] = request.frequency_penalty
    if request.n is not None: config["candidate_count"] = request.n
    config["safety_settings"] = [
            types.SafetySetting(category="HARM_CATEGORY_HATE_SPEECH", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_HARASSMENT", threshold="OFF"),
            types.SafetySetting(category="HARM_CATEGORY_CIVIC_INTEGRITY", threshold="OFF")
    ]
    return config

def is_response_valid(response):
    if response is None:
        print("DEBUG: Response is None, therefore invalid.")
        return False
    
    # Check for direct text attribute
    if hasattr(response, 'text') and isinstance(response.text, str) and response.text.strip():
        # print("DEBUG: Response valid due to response.text")
        return True
        
    # Check candidates for text content
    if hasattr(response, 'candidates') and response.candidates:
        for candidate in response.candidates: # Iterate through all candidates
            if hasattr(candidate, 'text') and isinstance(candidate.text, str) and candidate.text.strip():
                # print(f"DEBUG: Response valid due to candidate.text in candidate")
                return True
            if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
                for part in candidate.content.parts:
                    if hasattr(part, 'text') and isinstance(part.text, str) and part.text.strip():
                        # print(f"DEBUG: Response valid due to part.text in candidate's content part")
                        return True
                        
    # Removed prompt_feedback as a sole criterion for validity.
    # It should only be valid if actual text content is found.
    # Block reasons will be checked explicitly by callers if they need to treat it as an error for retries.
    print("DEBUG: Response is invalid, no usable text content found by is_response_valid.")
    return False

async def _base_fake_stream_engine(
    api_call_task_creator: Callable[[], asyncio.Task],
    extract_text_from_response_func: Callable[[Any], str], 
    response_id: str,
    sse_model_name: str,
    is_auto_attempt: bool,
    is_valid_response_func: Callable[[Any], bool],
    keep_alive_interval_seconds: float, 
    process_text_func: Optional[Callable[[str, str], str]] = None, 
    check_block_reason_func: Optional[Callable[[Any], None]] = None,
    reasoning_text_to_yield: Optional[str] = None,
    actual_content_text_to_yield: Optional[str] = None
):
    api_call_task = api_call_task_creator()

    if keep_alive_interval_seconds > 0:
        while not api_call_task.done():
            keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{"delta": {"reasoning_content": ""}, "index": 0, "finish_reason": None}]}
            yield f"data: {json.dumps(keep_alive_data)}\n\n"
            await asyncio.sleep(keep_alive_interval_seconds) 
    
    try:
        full_api_response = await api_call_task 

        if check_block_reason_func:
            check_block_reason_func(full_api_response) 

        if not is_valid_response_func(full_api_response): 
             raise ValueError(f"Invalid/empty API response in fake stream for model {sse_model_name}: {str(full_api_response)[:200]}")

        final_reasoning_text = reasoning_text_to_yield
        final_actual_content_text = actual_content_text_to_yield

        if final_reasoning_text is None and final_actual_content_text is None:
            extracted_full_text = extract_text_from_response_func(full_api_response)
            if process_text_func:
                final_actual_content_text = process_text_func(extracted_full_text, sse_model_name)
            else:
                final_actual_content_text = extracted_full_text
        else:
            if process_text_func:
                if final_reasoning_text is not None:
                    final_reasoning_text = process_text_func(final_reasoning_text, sse_model_name)
                if final_actual_content_text is not None:
                    final_actual_content_text = process_text_func(final_actual_content_text, sse_model_name)
        
        if final_reasoning_text: 
            reasoning_delta_data = {
                "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()),
                "model": sse_model_name, "choices": [{"index": 0, "delta": {"reasoning_content": final_reasoning_text}, "finish_reason": None}]
            }
            yield f"data: {json.dumps(reasoning_delta_data)}\n\n"
            if final_actual_content_text: 
                await asyncio.sleep(0.05) 

        content_to_chunk = final_actual_content_text or "" 
        chunk_size = max(20, math.ceil(len(content_to_chunk) / 10)) if content_to_chunk else 0
        
        if not content_to_chunk and content_to_chunk != "": 
            empty_delta_data = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{"index": 0, "delta": {"content": ""}, "finish_reason": None}]}
            yield f"data: {json.dumps(empty_delta_data)}\n\n"
        else: 
            for i in range(0, len(content_to_chunk), chunk_size):
                chunk_text = content_to_chunk[i:i+chunk_size]
                content_delta_data = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{"index": 0, "delta": {"content": chunk_text}, "finish_reason": None}]}
                yield f"data: {json.dumps(content_delta_data)}\n\n"
                if len(content_to_chunk) > chunk_size: await asyncio.sleep(0.05)

        yield create_final_chunk(sse_model_name, response_id)
        yield "data: [DONE]\n\n"

    except Exception as e:
        err_msg_detail = f"Error in _base_fake_stream_engine (model: '{sse_model_name}'): {type(e).__name__} - {str(e)}"
        print(f"ERROR: {err_msg_detail}")
        sse_err_msg_display = str(e) 
        if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
        err_resp_for_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
        json_payload_for_fake_stream_error = json.dumps(err_resp_for_sse)
        if not is_auto_attempt:
            yield f"data: {json_payload_for_fake_stream_error}\n\n"
            yield "data: [DONE]\n\n"
        raise

async def gemini_fake_stream_generator(
    gemini_client_instance: Any, 
    model_for_api_call: str, 
    prompt_for_api_call: Union[types.Content, List[types.Content]],
    gen_config_for_api_call: Dict[str, Any],
    request_obj: OpenAIRequest,
    is_auto_attempt: bool
):
    model_name_for_log = getattr(gemini_client_instance, 'model_name', 'unknown_gemini_model_object')
    print(f"FAKE STREAMING (Gemini): Prep for '{request_obj.model}' (API model string: '{model_for_api_call}', client obj: '{model_name_for_log}') with reasoning separation.")
    response_id = f"chatcmpl-{int(time.time())}"

    # 1. Create and await the API call task
    api_call_task = asyncio.create_task(
        gemini_client_instance.aio.models.generate_content(
            model=model_for_api_call, 
            contents=prompt_for_api_call, 
            config=gen_config_for_api_call
        )
    )

    # Keep-alive loop while the main API call is in progress
    outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
    if outer_keep_alive_interval > 0:
        while not api_call_task.done():
            keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"reasoning_content": ""}, "index": 0, "finish_reason": None}]}
            yield f"data: {json.dumps(keep_alive_data)}\n\n"
            await asyncio.sleep(outer_keep_alive_interval)
    
    try:
        raw_response = await api_call_task # Get the full Gemini response

        # 2. Parse the response for reasoning and content using the centralized parser
        separated_reasoning_text = ""
        separated_actual_content_text = ""
        if hasattr(raw_response, 'candidates') and raw_response.candidates:
            # Typically, fake streaming would focus on the first candidate
            separated_reasoning_text, separated_actual_content_text = parse_gemini_response_for_reasoning_and_content(raw_response.candidates[0])
        elif hasattr(raw_response, 'text') and raw_response.text is not None: # Fallback for simpler response structures
             separated_actual_content_text = raw_response.text

        # 3. Define a text processing function (e.g., for deobfuscation)
        def _process_gemini_text_if_needed(text: str, model_name: str) -> str:
            if model_name.endswith("-encrypt-full"):
                return deobfuscate_text(text)
            return text

        final_reasoning_text = _process_gemini_text_if_needed(separated_reasoning_text, request_obj.model)
        final_actual_content_text = _process_gemini_text_if_needed(separated_actual_content_text, request_obj.model)

        # Define block checking for the raw response
        def _check_gemini_block_wrapper(response_to_check: Any):
            if hasattr(response_to_check, 'prompt_feedback') and hasattr(response_to_check.prompt_feedback, 'block_reason') and response_to_check.prompt_feedback.block_reason:
                block_message = f"Response blocked by Gemini safety filter: {response_to_check.prompt_feedback.block_reason}"
                if hasattr(response_to_check.prompt_feedback, 'block_reason_message') and response_to_check.prompt_feedback.block_reason_message:
                    block_message += f" (Message: {response_to_check.prompt_feedback.block_reason_message})"
                raise ValueError(block_message)

        # Call _base_fake_stream_engine with pre-split and processed texts
        async for chunk in _base_fake_stream_engine(
            api_call_task_creator=lambda: asyncio.create_task(asyncio.sleep(0, result=raw_response)), # Dummy task
            extract_text_from_response_func=lambda r: "", # Not directly used as text is pre-split
            is_valid_response_func=is_response_valid, # Validates raw_response
            check_block_reason_func=_check_gemini_block_wrapper, # Checks raw_response
            process_text_func=None, # Text processing already done above
            response_id=response_id, 
            sse_model_name=request_obj.model,
            keep_alive_interval_seconds=0, # Keep-alive for this inner call is 0
            is_auto_attempt=is_auto_attempt,
            reasoning_text_to_yield=final_reasoning_text,
            actual_content_text_to_yield=final_actual_content_text
        ):
            yield chunk

    except Exception as e_outer_gemini:
        err_msg_detail = f"Error in gemini_fake_stream_generator (model: '{request_obj.model}'): {type(e_outer_gemini).__name__} - {str(e_outer_gemini)}"
        print(f"ERROR: {err_msg_detail}")
        sse_err_msg_display = str(e_outer_gemini)
        if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
        err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
        json_payload_error = json.dumps(err_resp_sse)
        if not is_auto_attempt:
            yield f"data: {json_payload_error}\n\n"
            yield "data: [DONE]\n\n"

async def execute_gemini_call(
    current_client: Any, 
    model_to_call: str,  
    prompt_func: Callable[[List[OpenAIMessage]], Union[types.Content, List[types.Content]]], 
    gen_config_for_call: Dict[str, Any], 
    request_obj: OpenAIRequest, 
    is_auto_attempt: bool = False
):
    actual_prompt_for_call = prompt_func(request_obj.messages)
    client_model_name_for_log = getattr(current_client, 'model_name', 'unknown_direct_client_object')
    print(f"INFO: execute_gemini_call for requested API model '{model_to_call}', using client object with internal name '{client_model_name_for_log}'. Original request model: '{request_obj.model}'")

    # 每次调用时直接从settings获取最新的FAKE_STREAMING值
    fake_streaming_enabled = False
    if hasattr(settings, 'FAKE_STREAMING'):
        fake_streaming_enabled = settings.FAKE_STREAMING
    else:
        fake_streaming_enabled = app_config.FAKE_STREAMING_ENABLED
    
    print(f"DEBUG: FAKE_STREAMING setting is {fake_streaming_enabled} for model {request_obj.model}")

    if request_obj.stream:
        if fake_streaming_enabled:
            return StreamingResponse(
                gemini_fake_stream_generator( 
                    current_client, 
                    model_to_call, 
                    actual_prompt_for_call, 
                    gen_config_for_call, 
                    request_obj, 
                    is_auto_attempt
                ), 
                media_type="text/event-stream"
            )
        
        response_id_for_stream = f"chatcmpl-{int(time.time())}"
        cand_count_stream = request_obj.n or 1
        
        async def _gemini_real_stream_generator_inner():
            try:
                async for chunk_item_call in await current_client.aio.models.generate_content_stream(
                    model=model_to_call, 
                    contents=actual_prompt_for_call, 
                    config=gen_config_for_call
                ):
                    yield convert_chunk_to_openai(chunk_item_call, request_obj.model, response_id_for_stream, 0)
                yield create_final_chunk(request_obj.model, response_id_for_stream, cand_count_stream)
                yield "data: [DONE]\n\n"
            except Exception as e_stream_call:
                err_msg_detail_stream = f"Streaming Error (Gemini API, model string: '{model_to_call}'): {type(e_stream_call).__name__} - {str(e_stream_call)}"
                print(f"ERROR: {err_msg_detail_stream}")
                s_err = str(e_stream_call); s_err = s_err[:1024]+"..." if len(s_err)>1024 else s_err
                err_resp = create_openai_error_response(500,s_err,"server_error")
                j_err = json.dumps(err_resp)
                if not is_auto_attempt: 
                    yield f"data: {j_err}\n\n"
                    yield "data: [DONE]\n\n"
                raise e_stream_call
        return StreamingResponse(_gemini_real_stream_generator_inner(), media_type="text/event-stream")
    else: 
        response_obj_call = await current_client.aio.models.generate_content(
            model=model_to_call, 
            contents=actual_prompt_for_call, 
            config=gen_config_for_call
        )
        if hasattr(response_obj_call, 'prompt_feedback') and hasattr(response_obj_call.prompt_feedback, 'block_reason') and response_obj_call.prompt_feedback.block_reason:
            block_msg = f"Blocked (Gemini): {response_obj_call.prompt_feedback.block_reason}"
            if hasattr(response_obj_call.prompt_feedback,'block_reason_message') and response_obj_call.prompt_feedback.block_reason_message: 
                block_msg+=f" ({response_obj_call.prompt_feedback.block_reason_message})"
            raise ValueError(block_msg)
        
        if not is_response_valid(response_obj_call): 
            raise ValueError(f"Invalid non-streaming Gemini response for model string '{model_to_call}'. Resp: {str(response_obj_call)[:200]}")
        return JSONResponse(content=convert_to_openai_format(response_obj_call, request_obj.model))