File size: 38,488 Bytes
d0dd276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import asyncio
import json # Needed for error streaming
import random
import time
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse, StreamingResponse
from typing import List, Dict, Any

from app.utils.logging import vertex_log
from app.config import settings

# Google and OpenAI specific imports
from google.genai import types
from google import genai
import openai
from app.vertex.credentials_manager import _refresh_auth, CredentialManager

# Local module imports
from app.vertex.models import OpenAIRequest, OpenAIMessage
from app.vertex.auth import get_api_key
import app.vertex.config as app_config
from app.vertex.model_loader import get_vertex_models, get_vertex_express_models
from app.vertex.message_processing import (
    create_gemini_prompt,
    create_encrypted_gemini_prompt,
    create_encrypted_full_gemini_prompt,
    parse_gemini_response_for_reasoning_and_content
)
from app.vertex.api_helpers import (
    create_generation_config,
    create_openai_error_response,
    execute_gemini_call
)

router = APIRouter()

@router.post("/v1/chat/completions")
async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)):
    try:
        # 获取credential_manager,如果不存在则创建一个新的
        try:
            credential_manager_instance = fastapi_request.app.state.credential_manager
            vertex_log('info', "Using existing credential manager from app state")
        except AttributeError:
            # 如果app.state中没有credential_manager,则创建一个新的
            vertex_log('warning', "No credential_manager found in app.state, creating a new one")
            credential_manager_instance = CredentialManager()
        
        OPENAI_DIRECT_SUFFIX = "-openai"
        EXPERIMENTAL_MARKER = "-exp-"
        PAY_PREFIX = "[PAY]"
        EXPRESS_PREFIX = "[EXPRESS] " # Note the space for easier stripping
        
        # Model validation based on a predefined list has been removed as per user request.
        # The application will now attempt to use any provided model string.
        # We still need to fetch vertex_express_model_ids for the Express Mode logic.
        # vertex_express_model_ids = await get_vertex_express_models() # We'll use the prefix now

        # Updated logic for is_openai_direct_model
        is_openai_direct_model = False
        if request.model.endswith(OPENAI_DIRECT_SUFFIX):
            temp_name_for_marker_check = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
            if temp_name_for_marker_check.startswith(PAY_PREFIX):
                is_openai_direct_model = True
            elif EXPERIMENTAL_MARKER in temp_name_for_marker_check:
                is_openai_direct_model = True
        is_auto_model = request.model.endswith("-auto")
        is_grounded_search = request.model.endswith("-search")
        is_encrypted_model = request.model.endswith("-encrypt")
        is_encrypted_full_model = request.model.endswith("-encrypt-full")
        is_nothinking_model = request.model.endswith("-nothinking")
        is_max_thinking_model = request.model.endswith("-max")
        base_model_name = request.model # Start with the full model name

        # Determine base_model_name by stripping known prefixes and suffixes
        # Order of stripping: Prefixes first, then suffixes.
        
        is_express_model_request = False
        if base_model_name.startswith(EXPRESS_PREFIX):
            is_express_model_request = True
            base_model_name = base_model_name[len(EXPRESS_PREFIX):]

        if base_model_name.startswith(PAY_PREFIX):
            base_model_name = base_model_name[len(PAY_PREFIX):]

        # Suffix stripping (applied to the name after prefix removal)
        # This order matters if a model could have multiple (e.g. -encrypt-auto, though not currently a pattern)
        if is_openai_direct_model: # This check is based on request.model, so it's fine here
            # If it was an OpenAI direct model, its base name is request.model minus suffix.
            # We need to ensure PAY_PREFIX or EXPRESS_PREFIX are also stripped if they were part of the original.
            temp_base_for_openai = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
            if temp_base_for_openai.startswith(EXPRESS_PREFIX):
                temp_base_for_openai = temp_base_for_openai[len(EXPRESS_PREFIX):]
            if temp_base_for_openai.startswith(PAY_PREFIX):
                temp_base_for_openai = temp_base_for_openai[len(PAY_PREFIX):]
            base_model_name = temp_base_for_openai # Assign the fully stripped name
        elif is_auto_model: base_model_name = base_model_name[:-len("-auto")]
        elif is_grounded_search: base_model_name = base_model_name[:-len("-search")]
        elif is_encrypted_full_model: base_model_name = base_model_name[:-len("-encrypt-full")] # Must be before -encrypt
        elif is_encrypted_model: base_model_name = base_model_name[:-len("-encrypt")]
        elif is_nothinking_model:
            base_model_name = base_model_name[:-len("-nothinking")]
        elif is_max_thinking_model:
            base_model_name = base_model_name[:-len("-max")]
        
        # Define supported models for these specific variants
        supported_flash_variants = [
            "gemini-2.5-flash-preview-04-17",
            "gemini-2.5-flash-preview-05-20",
            "gemini-2.5-pro-preview-06-05"
        ]
        supported_flash_variants_str = "' or '".join(supported_flash_variants)

        # Specific model variant checks (if any remain exclusive and not covered dynamically)
        if is_nothinking_model and base_model_name not in supported_flash_variants:
            return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-nothinking) is only supported for '{supported_flash_variants_str}'.", "invalid_request_error"))
        if is_max_thinking_model and base_model_name not in supported_flash_variants:
            return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-max) is only supported for '{supported_flash_variants_str}'.", "invalid_request_error"))

        generation_config = create_generation_config(request)

        client_to_use = None
        
        # 优先从settings获取配置,如果没有则使用app_config中的配置
        express_api_keys_list = []
        if hasattr(settings, 'VERTEX_EXPRESS_API_KEY') and settings.VERTEX_EXPRESS_API_KEY:
            express_api_keys_list = [key.strip() for key in settings.VERTEX_EXPRESS_API_KEY.split(',') if key.strip()]
            vertex_log('info', f"Using {len(express_api_keys_list)} Express API keys from settings")
        # 如果settings中没有配置,则使用app_config中的配置
        if not express_api_keys_list and app_config.VERTEX_EXPRESS_API_KEY_VAL:
            express_api_keys_list = app_config.VERTEX_EXPRESS_API_KEY_VAL
            vertex_log('info', f"Using {len(express_api_keys_list)} Express API keys from app_config")

        # This client initialization logic is for Gemini models.
        # OpenAI Direct models have their own client setup and will return before this.
        if is_openai_direct_model:
            # OpenAI Direct logic is self-contained and will return.
            # If it doesn't return, it means we proceed to Gemini logic, which shouldn't happen
            # if is_openai_direct_model is true. The main if/elif/else for model types handles this.
            pass
        elif is_express_model_request:
            if not express_api_keys_list:
                error_msg = f"Model '{request.model}' is an Express model and requires an Express API key, but none are configured."
                vertex_log('error', error_msg)
                return JSONResponse(status_code=401, content=create_openai_error_response(401, error_msg, "authentication_error"))

            vertex_log('info', f"INFO: Attempting Vertex Express Mode for model request: {request.model} (base: {base_model_name})")
            indexed_keys = list(enumerate(express_api_keys_list))
            random.shuffle(indexed_keys)
            
            for original_idx, key_val in indexed_keys:
                try:
                    client_to_use = genai.Client(vertexai=True, api_key=key_val)
                    vertex_log('info', f"INFO: Using Vertex Express Mode for model {request.model} (base: {base_model_name}) with API key (original index: {original_idx}).")
                    break # Successfully initialized client
                except Exception as e:
                    vertex_log('warning', f"WARNING: Vertex Express Mode client init failed for API key (original index: {original_idx}) for model {request.model}: {e}. Trying next key.")
                    client_to_use = None # Ensure client_to_use is None for this attempt

            if client_to_use is None: # All configured Express keys failed
                error_msg = f"All configured Express API keys failed to initialize for model '{request.model}'."
                vertex_log('error', error_msg)
                return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))
        
        else: # Not an Express model request, therefore an SA credential model request for Gemini
            vertex_log('info', f"INFO: Model '{request.model}' is an SA credential request for Gemini. Attempting SA credentials.")
            rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()
            
            if rotated_credentials and rotated_project_id:
                try:
                    client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="global")
                    vertex_log('info', f"INFO: Using SA credential for Gemini model {request.model} (project: {rotated_project_id})")
                except Exception as e:
                    client_to_use = None # Ensure it's None on failure
                    error_msg = f"SA credential client initialization failed for Gemini model '{request.model}': {e}."
                    vertex_log('error', error_msg)
                    return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))
            else: # No SA credentials available for an SA model request
                error_msg = f"Model '{request.model}' requires SA credentials for Gemini, but none are available or loaded."
                vertex_log('error', error_msg)
                return JSONResponse(status_code=401, content=create_openai_error_response(401, error_msg, "authentication_error"))

        # If we reach here and client_to_use is still None, it means it's an OpenAI Direct Model,
        # which handles its own client and responses.
        # For Gemini models (Express or SA), client_to_use must be set, or an error returned above.
        if not is_openai_direct_model and client_to_use is None:
             # This case should ideally not be reached if the logic above is correct,
             # as each path (Express/SA for Gemini) should either set client_to_use or return an error.
             # This is a safeguard.
            vertex_log('critical', f"CRITICAL ERROR: Client for Gemini model '{request.model}' was not initialized, and no specific error was returned. This indicates a logic flaw.")
            return JSONResponse(status_code=500, content=create_openai_error_response(500, "Critical internal server error: Gemini client not initialized.", "server_error"))

        encryption_instructions_placeholder = ["// Protocol Instructions Placeholder //"] # Actual instructions are in message_processing
        if is_openai_direct_model:
            vertex_log('info', f"INFO: Using OpenAI Direct Path for model: {request.model}")
            # This mode exclusively uses rotated credentials, not express keys.
            rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()

            if not rotated_credentials or not rotated_project_id:
                error_msg = "OpenAI Direct Mode requires GCP credentials, but none were available or loaded successfully."
                vertex_log('error', error_msg)
                return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))

            vertex_log('info', f"INFO: [OpenAI Direct Path] Using credentials for project: {rotated_project_id}")
            gcp_token = _refresh_auth(rotated_credentials)

            if not gcp_token:
                error_msg = f"Failed to obtain valid GCP token for OpenAI client (Source: Credential Manager, Project: {rotated_project_id})."
                vertex_log('error', error_msg)
                return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))

            PROJECT_ID = rotated_project_id
            LOCATION = "global" # Fixed as per user confirmation
            VERTEX_AI_OPENAI_ENDPOINT_URL = (
                f"https://aiplatform.googleapis.com/v1beta1/"
                f"projects/{PROJECT_ID}/locations/{LOCATION}/endpoints/openapi"
            )
            # base_model_name is already extracted (e.g., "gemini-1.5-pro-exp-v1")
            UNDERLYING_MODEL_ID = f"google/{base_model_name}"

            openai_client = openai.AsyncOpenAI(
                base_url=VERTEX_AI_OPENAI_ENDPOINT_URL,
                api_key=gcp_token, # OAuth token
            )

            openai_safety_settings = [
                {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "OFF"},
                {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "OFF"},
                {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "OFF"},
                {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "OFF"},
                {"category": 'HARM_CATEGORY_CIVIC_INTEGRITY', "threshold": 'OFF'}
            ]

            openai_params = {
                "model": UNDERLYING_MODEL_ID,
                "messages": [msg.model_dump(exclude_unset=True) for msg in request.messages],
                "temperature": request.temperature,
                "max_tokens": request.max_tokens,
                "top_p": request.top_p,
                "stream": request.stream,
                "stop": request.stop,
                "seed": request.seed,
                "n": request.n,
            }
            openai_params = {k: v for k, v in openai_params.items() if v is not None}

            openai_extra_body = {
                'google': {
                    'safety_settings': openai_safety_settings
                }
            }

            if request.stream:
                # 每次调用时直接从settings获取最新的FAKE_STREAMING值
                fake_streaming_enabled = False
                if hasattr(settings, 'FAKE_STREAMING'):
                    fake_streaming_enabled = settings.FAKE_STREAMING
                else:
                    fake_streaming_enabled = app_config.FAKE_STREAMING_ENABLED
                
                vertex_log('info', f"DEBUG: FAKE_STREAMING setting is {fake_streaming_enabled} for OpenAI model {request.model}")
                
                if fake_streaming_enabled:
                    vertex_log('info', f"INFO: OpenAI Fake Streaming (SSE Simulation) ENABLED for model '{request.model}'.")
                    # openai_params already has "stream": True from initial setup,
                    # but openai_fake_stream_generator will make a stream=False call internally.
                    # Call the now async generator
                    return StreamingResponse(
                        openai_fake_stream_generator(
                            openai_client=openai_client,
                            openai_params=openai_params,
                            openai_extra_body=openai_extra_body,
                            request_obj=request,
                            is_auto_attempt=False,
                            # --- New parameters for tokenizer and reasoning split ---
                            gcp_credentials=rotated_credentials,
                            gcp_project_id=PROJECT_ID, # This is rotated_project_id
                            gcp_location=LOCATION,     # This is "global"
                            base_model_id_for_tokenizer=base_model_name # Stripped model ID for tokenizer
                        ),
                        media_type="text/event-stream"
                    )
                else: # Regular OpenAI streaming
                    vertex_log('info', f"INFO: OpenAI True Streaming ENABLED for model '{request.model}'.")
                    async def openai_true_stream_generator(): # Renamed to avoid conflict
                        try:
                            # Ensure stream=True is explicitly passed for real streaming
                            openai_params_for_true_stream = {**openai_params, "stream": True}
                            stream_response = await openai_client.chat.completions.create(
                                **openai_params_for_true_stream,
                                extra_body=openai_extra_body
                            )
                            async for chunk in stream_response:
                                try:
                                    chunk_as_dict = chunk.model_dump(exclude_unset=True, exclude_none=True)
                                    
                                    choices = chunk_as_dict.get('choices')
                                    if choices and isinstance(choices, list) and len(choices) > 0:
                                        delta = choices[0].get('delta')
                                        if delta and isinstance(delta, dict):
                                            extra_content = delta.get('extra_content')
                                            if isinstance(extra_content, dict):
                                                google_content = extra_content.get('google')
                                                if isinstance(google_content, dict) and google_content.get('thought') is True:
                                                    reasoning_text = delta.get('content')
                                                    if reasoning_text is not None:
                                                        delta['reasoning_content'] = reasoning_text
                                                    if 'content' in delta: del delta['content']
                                                    if 'extra_content' in delta: del delta['extra_content']
                                    
                                    # vertex_log('debug', f"DEBUG OpenAI Stream Chunk: {chunk_as_dict}") # Potential verbose log
                                    yield f"data: {json.dumps(chunk_as_dict)}\n\n"

                                except Exception as chunk_processing_error:
                                    error_msg_chunk = f"Error processing/serializing OpenAI chunk for {request.model}: {str(chunk_processing_error)}. Chunk: {str(chunk)[:200]}"
                                    vertex_log('error', error_msg_chunk)
                                    if len(error_msg_chunk) > 1024: error_msg_chunk = error_msg_chunk[:1024] + "..."
                                    error_response_chunk = create_openai_error_response(500, error_msg_chunk, "server_error")
                                    json_payload_for_chunk_error = json.dumps(error_response_chunk)
                                    yield f"data: {json_payload_for_chunk_error}\n\n"
                                    yield "data: [DONE]\n\n"
                                    return
                            yield "data: [DONE]\n\n"
                        except Exception as stream_error:
                            original_error_message = str(stream_error)
                            if len(original_error_message) > 1024: original_error_message = original_error_message[:1024] + "..."
                            error_msg_stream = f"Error during OpenAI client true streaming for {request.model}: {original_error_message}"
                            vertex_log('error', error_msg_stream)
                            error_response_content = create_openai_error_response(500, error_msg_stream, "server_error")
                            json_payload_for_stream_error = json.dumps(error_response_content)
                            yield f"data: {json_payload_for_stream_error}\n\n"
                            yield "data: [DONE]\n\n"
                    return StreamingResponse(openai_true_stream_generator(), media_type="text/event-stream")
            else: # Not streaming (is_openai_direct_model and not request.stream)
                try:
                    # Ensure stream=False is explicitly passed for non-streaming
                    openai_params_for_non_stream = {**openai_params, "stream": False}
                    response = await openai_client.chat.completions.create(
                        **openai_params_for_non_stream,
                        # Removed redundant **openai_params spread
                        extra_body=openai_extra_body
                    )
                    response_dict = response.model_dump(exclude_unset=True, exclude_none=True)
                    
                    try:
                        # Extract reasoning directly from the response
                        choices = response_dict.get('choices')
                        if choices and isinstance(choices, list) and len(choices) > 0:
                            message_dict = choices[0].get('message')
                            if message_dict and isinstance(message_dict, dict):
                                # Always remove extra_content from the message if it exists
                                if 'extra_content' in message_dict:
                                    extra_content = message_dict.get('extra_content', {})
                                    google_content = extra_content.get('google', {})
                                    
                                    # If this is a thought, move content to reasoning_content
                                    if google_content and google_content.get('thought') is True:
                                        message_dict['reasoning_content'] = message_dict.get('content', '')
                                        message_dict['content'] = ''
                                    
                                    # Always remove extra_content
                                    del message_dict['extra_content']
                                    vertex_log('debug', "DEBUG: Processed 'extra_content' from response message.")
                                    
                    except Exception as e_reasoning_processing:
                        vertex_log('warning', f"WARNING: Error during non-streaming reasoning processing for model {request.model} due to: {e_reasoning_processing}.")
                        
                    return JSONResponse(content=response_dict)
                except Exception as generate_error:
                    error_msg_generate = f"Error calling OpenAI client for {request.model}: {str(generate_error)}"
                    vertex_log('error', error_msg_generate)
                    error_response = create_openai_error_response(500, error_msg_generate, "server_error")
                    return JSONResponse(status_code=500, content=error_response)
        elif is_auto_model:
            vertex_log('info', f"Processing auto model: {request.model}")
            attempts = [
                {"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c},
                {"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": encryption_instructions_placeholder}},
                {"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c}                  
            ]
            last_err = None
            for attempt in attempts:
                vertex_log('info', f"Auto-mode attempting: '{attempt['name']}' for model {attempt['model']}")
                current_gen_config = attempt["config_modifier"](generation_config.copy())
                try:
                    # Pass is_auto_attempt=True for auto-mode calls
                    return await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request, is_auto_attempt=True)
                except Exception as e_auto:
                    last_err = e_auto
                    vertex_log('info', f"Auto-attempt '{attempt['name']}' for model {attempt['model']} failed: {e_auto}")
                    await asyncio.sleep(1)
            
            vertex_log('info', f"All auto attempts failed. Last error: {last_err}")
            err_msg = f"All auto-mode attempts failed for model {request.model}. Last error: {str(last_err)}"
            if not request.stream and last_err:
                 return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error"))
            elif request.stream: 
                # This is the final error handling for auto-mode if all attempts fail AND it was a streaming request
                async def final_auto_error_stream():
                    err_content = create_openai_error_response(500, err_msg, "server_error")
                    json_payload_final_auto_error = json.dumps(err_content)
                    # Log the final error being sent to client after all auto-retries failed
                    vertex_log('debug', f"DEBUG: Auto-mode all attempts failed. Yielding final error JSON: {json_payload_final_auto_error}")
                    yield f"data: {json_payload_final_auto_error}\n\n"
                    yield "data: [DONE]\n\n"
                return StreamingResponse(final_auto_error_stream(), media_type="text/event-stream")
            return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error"))

        else: # Not an auto model
            current_prompt_func = create_gemini_prompt
            # Determine the actual model string to call the API with (e.g., "gemini-1.5-pro-search")
            api_model_string = request.model 

            if is_grounded_search:
                search_tool = types.Tool(google_search=types.GoogleSearch())
                generation_config["tools"] = [search_tool]
            elif is_encrypted_model:
                generation_config["system_instruction"] = encryption_instructions_placeholder
                current_prompt_func = create_encrypted_gemini_prompt
            elif is_encrypted_full_model:
                generation_config["system_instruction"] = encryption_instructions_placeholder
                current_prompt_func = create_encrypted_full_gemini_prompt
            elif is_nothinking_model:
                # 为gemini-2.5-pro-preview-06-05设置特定的thinking_budget
                if base_model_name == "gemini-2.5-pro-preview-06-05":
                    generation_config["thinking_config"] = {"thinking_budget": 128}
                else:
                    generation_config["thinking_config"] = {"thinking_budget": 0}
            elif is_max_thinking_model:
                # 为gemini-2.5-pro-preview-06-05设置特定的thinking_budget
                if base_model_name == "gemini-2.5-pro-preview-06-05":
                    generation_config["thinking_config"] = {"thinking_budget": 32768}
                else:
                    generation_config["thinking_config"] = {"thinking_budget": 24576}
            
            # For non-auto models, the 'base_model_name' might have suffix stripped.
            # We should use the original 'request.model' for API call if it's a suffixed one,
            # or 'base_model_name' if it's truly a base model without suffixes.
            # The current logic uses 'base_model_name' for the API call in the 'else' block.
            # This means if `request.model` was "gemini-1.5-pro-search", `base_model_name` becomes "gemini-1.5-pro"
            # but the API call might need the full "gemini-1.5-pro-search".
            # Let's use `request.model` for the API call here, and `base_model_name` for checks like Express eligibility.
            # For non-auto mode, is_auto_attempt defaults to False in execute_gemini_call
            return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request)

    except Exception as e:
        error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}"
        vertex_log('error', error_msg)
        return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))

async def _base_fake_stream_engine(
    api_call_task_creator,
    extract_text_from_response_func,
    is_valid_response_func,
    response_id,
    sse_model_name,
    keep_alive_interval_seconds=0,
    is_auto_attempt=False,
    reasoning_text_to_yield="",
    actual_content_text_to_yield=""
):
    """Base engine for fake streaming that handles common logic for both Gemini and OpenAI."""
    try:
        # Wait for the API call to complete
        api_response = await api_call_task_creator()
        
        # Validate the response
        if not is_valid_response_func(api_response):
            error_msg = f"Invalid response structure from API for model {sse_model_name}"
            vertex_log('error', error_msg)
            err_resp = create_openai_error_response(500, error_msg, "server_error")
            yield f"data: {json.dumps(err_resp)}\n\n"
            yield "data: [DONE]\n\n"
            return
        
        # Get the full text from the response
        full_text = ""
        if reasoning_text_to_yield or actual_content_text_to_yield:
            # If we already have separated reasoning and content, use them
            if reasoning_text_to_yield:
                # First yield the reasoning content in a separate chunk
                reasoning_chunk = {
                    "id": response_id,
                    "object": "chat.completion.chunk",
                    "created": int(time.time()),
                    "model": sse_model_name,
                    "choices": [{
                        "index": 0,
                        "delta": {"reasoning_content": reasoning_text_to_yield},
                        "finish_reason": None
                    }]
                }
                yield f"data: {json.dumps(reasoning_chunk)}\n\n"
                
            # Then use the actual content for streaming
            full_text = actual_content_text_to_yield
        else:
            # Otherwise extract the full text from the response
            full_text = extract_text_from_response_func(api_response)
        
        if not full_text:
            # If there's no text to stream, just send an empty delta and finish
            empty_chunk = {
                "id": response_id,
                "object": "chat.completion.chunk",
                "created": int(time.time()),
                "model": sse_model_name,
                "choices": [{
                    "index": 0,
                    "delta": {"content": ""},
                    "finish_reason": "stop"
                }]
            }
            yield f"data: {json.dumps(empty_chunk)}\n\n"
            yield "data: [DONE]\n\n"
            return
        
        # Simulate streaming by yielding chunks of the full text
        chunk_size = app_config.FAKE_STREAMING_CHUNK_SIZE
        delay_per_chunk = app_config.FAKE_STREAMING_DELAY_PER_CHUNK
        
        # Initial chunk with role
        initial_chunk = {
            "id": response_id,
            "object": "chat.completion.chunk",
            "created": int(time.time()),
            "model": sse_model_name,
            "choices": [{
                "index": 0,
                "delta": {"role": "assistant"},
                "finish_reason": None
            }]
        }
        yield f"data: {json.dumps(initial_chunk)}\n\n"
        
        # Stream the content in chunks
        for i in range(0, len(full_text), chunk_size):
            chunk_text = full_text[i:i+chunk_size]
            content_chunk = {
                "id": response_id,
                "object": "chat.completion.chunk",
                "created": int(time.time()),
                "model": sse_model_name,
                "choices": [{
                    "index": 0,
                    "delta": {"content": chunk_text},
                    "finish_reason": None
                }]
            }
            yield f"data: {json.dumps(content_chunk)}\n\n"
            
            if i + chunk_size < len(full_text) and delay_per_chunk > 0:
                await asyncio.sleep(delay_per_chunk)
        
        # Final chunk to indicate completion
        final_chunk = {
            "id": response_id,
            "object": "chat.completion.chunk",
            "created": int(time.time()),
            "model": sse_model_name,
            "choices": [{
                "index": 0,
                "delta": {},
                "finish_reason": "stop"
            }]
        }
        yield f"data: {json.dumps(final_chunk)}\n\n"
        yield "data: [DONE]\n\n"
        
    except Exception as e:
        error_msg = f"Error in _base_fake_stream_engine for model {sse_model_name}: {str(e)}"
        vertex_log('error', error_msg)
        if not is_auto_attempt:  # Only yield error for non-auto attempts
            err_resp = create_openai_error_response(500, error_msg, "server_error")
            yield f"data: {json.dumps(err_resp)}\n\n"
            yield "data: [DONE]\n\n"

async def openai_fake_stream_generator(
    openai_client: openai.AsyncOpenAI,
    openai_params: Dict[str, Any], 
    openai_extra_body: Dict[str, Any],
    request_obj: OpenAIRequest,
    is_auto_attempt: bool,
    gcp_credentials: Any, 
    gcp_project_id: str, 
    gcp_location: str,
    base_model_id_for_tokenizer: str 
):
    api_model_name = openai_params.get("model", "unknown-openai-model")
    vertex_log('info', f"FAKE STREAMING (OpenAI): Prep for '{request_obj.model}' (API model: '{api_model_name}')")
    response_id = f"chatcmpl-{int(time.time())}"
    
    async def _openai_api_call_wrapper():
        params_for_non_stream_call = openai_params.copy()
        params_for_non_stream_call['stream'] = False
        
        _api_call_task = asyncio.create_task(
            openai_client.chat.completions.create(**params_for_non_stream_call, extra_body=openai_extra_body)
        )
        raw_response = await _api_call_task
        
        # Extract reasoning and content directly from the response
        full_content_from_api = ""
        reasoning_text = ""
        
        if raw_response.choices and raw_response.choices[0].message:
            # Check for extra_content with google.thought
            message = raw_response.choices[0].message
            if hasattr(message, 'extra_content') and message.extra_content:
                google_content = message.extra_content.get('google', {})
                if google_content and google_content.get('thought') is True:
                    reasoning_text = message.content
                    full_content_from_api = ""  # Clear content as it's reasoning
                else:
                    full_content_from_api = message.content
            else:
                full_content_from_api = message.content
        
        return raw_response, reasoning_text, full_content_from_api

    temp_task_for_keepalive_check = asyncio.create_task(_openai_api_call_wrapper())
    outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
    if outer_keep_alive_interval > 0:
        while not temp_task_for_keepalive_check.done():
            keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]}
            yield f"data: {json.dumps(keep_alive_data)}\n\n"
            await asyncio.sleep(outer_keep_alive_interval)

    try:
        full_api_response, separated_reasoning_text, separated_actual_content_text = await temp_task_for_keepalive_check
        def _extract_openai_full_text(response: Any) -> str: 
            if response.choices and response.choices[0].message and response.choices[0].message.content is not None:
                return response.choices[0].message.content
            return ""
        def _is_openai_response_valid(response: Any) -> bool:
            return bool(response.choices and response.choices[0].message is not None)

        async for chunk in _base_fake_stream_engine(
            api_call_task_creator=lambda: asyncio.create_task(asyncio.sleep(0, result=full_api_response)), 
            extract_text_from_response_func=_extract_openai_full_text, 
            is_valid_response_func=_is_openai_response_valid,
            response_id=response_id,
            sse_model_name=request_obj.model,
            keep_alive_interval_seconds=0, 
            is_auto_attempt=is_auto_attempt,
            reasoning_text_to_yield=separated_reasoning_text,
            actual_content_text_to_yield=separated_actual_content_text
        ):
            yield chunk
            
    except Exception as e_outer: 
        err_msg_detail = f"Error in openai_fake_stream_generator outer (model: '{request_obj.model}'): {type(e_outer).__name__} - {str(e_outer)}"
        vertex_log('error', err_msg_detail)
        sse_err_msg_display = str(e_outer)
        if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
        err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
        json_payload_error = json.dumps(err_resp_sse)
        if not is_auto_attempt:
            yield f"data: {json_payload_error}\n\n"
            yield "data: [DONE]\n\n"