import asyncio import json # Needed for error streaming import random import time from fastapi import APIRouter, Depends, Request from fastapi.responses import JSONResponse, StreamingResponse from typing import List, Dict, Any from app.utils.logging import vertex_log from app.config import settings # Google and OpenAI specific imports from google.genai import types from google import genai import openai from app.vertex.credentials_manager import _refresh_auth, CredentialManager # Local module imports from app.vertex.models import OpenAIRequest, OpenAIMessage from app.vertex.auth import get_api_key import app.vertex.config as app_config from app.vertex.model_loader import get_vertex_models, get_vertex_express_models from app.vertex.message_processing import ( create_gemini_prompt, create_encrypted_gemini_prompt, create_encrypted_full_gemini_prompt, parse_gemini_response_for_reasoning_and_content ) from app.vertex.api_helpers import ( create_generation_config, create_openai_error_response, execute_gemini_call ) router = APIRouter() @router.post("/v1/chat/completions") async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)): try: # 获取credential_manager,如果不存在则创建一个新的 try: credential_manager_instance = fastapi_request.app.state.credential_manager vertex_log('info', "Using existing credential manager from app state") except AttributeError: # 如果app.state中没有credential_manager,则创建一个新的 vertex_log('warning', "No credential_manager found in app.state, creating a new one") credential_manager_instance = CredentialManager() OPENAI_DIRECT_SUFFIX = "-openai" EXPERIMENTAL_MARKER = "-exp-" PAY_PREFIX = "[PAY]" EXPRESS_PREFIX = "[EXPRESS] " # Note the space for easier stripping # Model validation based on a predefined list has been removed as per user request. # The application will now attempt to use any provided model string. # We still need to fetch vertex_express_model_ids for the Express Mode logic. # vertex_express_model_ids = await get_vertex_express_models() # We'll use the prefix now # Updated logic for is_openai_direct_model is_openai_direct_model = False if request.model.endswith(OPENAI_DIRECT_SUFFIX): temp_name_for_marker_check = request.model[:-len(OPENAI_DIRECT_SUFFIX)] if temp_name_for_marker_check.startswith(PAY_PREFIX): is_openai_direct_model = True elif EXPERIMENTAL_MARKER in temp_name_for_marker_check: is_openai_direct_model = True is_auto_model = request.model.endswith("-auto") is_grounded_search = request.model.endswith("-search") is_encrypted_model = request.model.endswith("-encrypt") is_encrypted_full_model = request.model.endswith("-encrypt-full") is_nothinking_model = request.model.endswith("-nothinking") is_max_thinking_model = request.model.endswith("-max") base_model_name = request.model # Start with the full model name # Determine base_model_name by stripping known prefixes and suffixes # Order of stripping: Prefixes first, then suffixes. is_express_model_request = False if base_model_name.startswith(EXPRESS_PREFIX): is_express_model_request = True base_model_name = base_model_name[len(EXPRESS_PREFIX):] if base_model_name.startswith(PAY_PREFIX): base_model_name = base_model_name[len(PAY_PREFIX):] # Suffix stripping (applied to the name after prefix removal) # This order matters if a model could have multiple (e.g. -encrypt-auto, though not currently a pattern) if is_openai_direct_model: # This check is based on request.model, so it's fine here # If it was an OpenAI direct model, its base name is request.model minus suffix. # We need to ensure PAY_PREFIX or EXPRESS_PREFIX are also stripped if they were part of the original. temp_base_for_openai = request.model[:-len(OPENAI_DIRECT_SUFFIX)] if temp_base_for_openai.startswith(EXPRESS_PREFIX): temp_base_for_openai = temp_base_for_openai[len(EXPRESS_PREFIX):] if temp_base_for_openai.startswith(PAY_PREFIX): temp_base_for_openai = temp_base_for_openai[len(PAY_PREFIX):] base_model_name = temp_base_for_openai # Assign the fully stripped name elif is_auto_model: base_model_name = base_model_name[:-len("-auto")] elif is_grounded_search: base_model_name = base_model_name[:-len("-search")] elif is_encrypted_full_model: base_model_name = base_model_name[:-len("-encrypt-full")] # Must be before -encrypt elif is_encrypted_model: base_model_name = base_model_name[:-len("-encrypt")] elif is_nothinking_model: base_model_name = base_model_name[:-len("-nothinking")] elif is_max_thinking_model: base_model_name = base_model_name[:-len("-max")] # Define supported models for these specific variants supported_flash_variants = [ "gemini-2.5-flash-preview-04-17", "gemini-2.5-flash-preview-05-20", "gemini-2.5-pro-preview-06-05" ] supported_flash_variants_str = "' or '".join(supported_flash_variants) # Specific model variant checks (if any remain exclusive and not covered dynamically) if is_nothinking_model and base_model_name not in supported_flash_variants: return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-nothinking) is only supported for '{supported_flash_variants_str}'.", "invalid_request_error")) if is_max_thinking_model and base_model_name not in supported_flash_variants: return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-max) is only supported for '{supported_flash_variants_str}'.", "invalid_request_error")) generation_config = create_generation_config(request) client_to_use = None # 优先从settings获取配置,如果没有则使用app_config中的配置 express_api_keys_list = [] if hasattr(settings, 'VERTEX_EXPRESS_API_KEY') and settings.VERTEX_EXPRESS_API_KEY: express_api_keys_list = [key.strip() for key in settings.VERTEX_EXPRESS_API_KEY.split(',') if key.strip()] vertex_log('info', f"Using {len(express_api_keys_list)} Express API keys from settings") # 如果settings中没有配置,则使用app_config中的配置 if not express_api_keys_list and app_config.VERTEX_EXPRESS_API_KEY_VAL: express_api_keys_list = app_config.VERTEX_EXPRESS_API_KEY_VAL vertex_log('info', f"Using {len(express_api_keys_list)} Express API keys from app_config") # This client initialization logic is for Gemini models. # OpenAI Direct models have their own client setup and will return before this. if is_openai_direct_model: # OpenAI Direct logic is self-contained and will return. # If it doesn't return, it means we proceed to Gemini logic, which shouldn't happen # if is_openai_direct_model is true. The main if/elif/else for model types handles this. pass elif is_express_model_request: if not express_api_keys_list: error_msg = f"Model '{request.model}' is an Express model and requires an Express API key, but none are configured." vertex_log('error', error_msg) return JSONResponse(status_code=401, content=create_openai_error_response(401, error_msg, "authentication_error")) vertex_log('info', f"INFO: Attempting Vertex Express Mode for model request: {request.model} (base: {base_model_name})") indexed_keys = list(enumerate(express_api_keys_list)) random.shuffle(indexed_keys) for original_idx, key_val in indexed_keys: try: client_to_use = genai.Client(vertexai=True, api_key=key_val) vertex_log('info', f"INFO: Using Vertex Express Mode for model {request.model} (base: {base_model_name}) with API key (original index: {original_idx}).") break # Successfully initialized client except Exception as e: vertex_log('warning', f"WARNING: Vertex Express Mode client init failed for API key (original index: {original_idx}) for model {request.model}: {e}. Trying next key.") client_to_use = None # Ensure client_to_use is None for this attempt if client_to_use is None: # All configured Express keys failed error_msg = f"All configured Express API keys failed to initialize for model '{request.model}'." vertex_log('error', error_msg) return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error")) else: # Not an Express model request, therefore an SA credential model request for Gemini vertex_log('info', f"INFO: Model '{request.model}' is an SA credential request for Gemini. Attempting SA credentials.") rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials() if rotated_credentials and rotated_project_id: try: client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="global") vertex_log('info', f"INFO: Using SA credential for Gemini model {request.model} (project: {rotated_project_id})") except Exception as e: client_to_use = None # Ensure it's None on failure error_msg = f"SA credential client initialization failed for Gemini model '{request.model}': {e}." vertex_log('error', error_msg) return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error")) else: # No SA credentials available for an SA model request error_msg = f"Model '{request.model}' requires SA credentials for Gemini, but none are available or loaded." vertex_log('error', error_msg) return JSONResponse(status_code=401, content=create_openai_error_response(401, error_msg, "authentication_error")) # If we reach here and client_to_use is still None, it means it's an OpenAI Direct Model, # which handles its own client and responses. # For Gemini models (Express or SA), client_to_use must be set, or an error returned above. if not is_openai_direct_model and client_to_use is None: # This case should ideally not be reached if the logic above is correct, # as each path (Express/SA for Gemini) should either set client_to_use or return an error. # This is a safeguard. vertex_log('critical', f"CRITICAL ERROR: Client for Gemini model '{request.model}' was not initialized, and no specific error was returned. This indicates a logic flaw.") return JSONResponse(status_code=500, content=create_openai_error_response(500, "Critical internal server error: Gemini client not initialized.", "server_error")) encryption_instructions_placeholder = ["// Protocol Instructions Placeholder //"] # Actual instructions are in message_processing if is_openai_direct_model: vertex_log('info', f"INFO: Using OpenAI Direct Path for model: {request.model}") # This mode exclusively uses rotated credentials, not express keys. rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials() if not rotated_credentials or not rotated_project_id: error_msg = "OpenAI Direct Mode requires GCP credentials, but none were available or loaded successfully." vertex_log('error', error_msg) return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error")) vertex_log('info', f"INFO: [OpenAI Direct Path] Using credentials for project: {rotated_project_id}") gcp_token = _refresh_auth(rotated_credentials) if not gcp_token: error_msg = f"Failed to obtain valid GCP token for OpenAI client (Source: Credential Manager, Project: {rotated_project_id})." vertex_log('error', error_msg) return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error")) PROJECT_ID = rotated_project_id LOCATION = "global" # Fixed as per user confirmation VERTEX_AI_OPENAI_ENDPOINT_URL = ( f"https://aiplatform.googleapis.com/v1beta1/" f"projects/{PROJECT_ID}/locations/{LOCATION}/endpoints/openapi" ) # base_model_name is already extracted (e.g., "gemini-1.5-pro-exp-v1") UNDERLYING_MODEL_ID = f"google/{base_model_name}" openai_client = openai.AsyncOpenAI( base_url=VERTEX_AI_OPENAI_ENDPOINT_URL, api_key=gcp_token, # OAuth token ) openai_safety_settings = [ {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "OFF"}, {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "OFF"}, {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "OFF"}, {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "OFF"}, {"category": 'HARM_CATEGORY_CIVIC_INTEGRITY', "threshold": 'OFF'} ] openai_params = { "model": UNDERLYING_MODEL_ID, "messages": [msg.model_dump(exclude_unset=True) for msg in request.messages], "temperature": request.temperature, "max_tokens": request.max_tokens, "top_p": request.top_p, "stream": request.stream, "stop": request.stop, "seed": request.seed, "n": request.n, } openai_params = {k: v for k, v in openai_params.items() if v is not None} openai_extra_body = { 'google': { 'safety_settings': openai_safety_settings } } if request.stream: # 每次调用时直接从settings获取最新的FAKE_STREAMING值 fake_streaming_enabled = False if hasattr(settings, 'FAKE_STREAMING'): fake_streaming_enabled = settings.FAKE_STREAMING else: fake_streaming_enabled = app_config.FAKE_STREAMING_ENABLED vertex_log('info', f"DEBUG: FAKE_STREAMING setting is {fake_streaming_enabled} for OpenAI model {request.model}") if fake_streaming_enabled: vertex_log('info', f"INFO: OpenAI Fake Streaming (SSE Simulation) ENABLED for model '{request.model}'.") # openai_params already has "stream": True from initial setup, # but openai_fake_stream_generator will make a stream=False call internally. # Call the now async generator return StreamingResponse( openai_fake_stream_generator( openai_client=openai_client, openai_params=openai_params, openai_extra_body=openai_extra_body, request_obj=request, is_auto_attempt=False, # --- New parameters for tokenizer and reasoning split --- gcp_credentials=rotated_credentials, gcp_project_id=PROJECT_ID, # This is rotated_project_id gcp_location=LOCATION, # This is "global" base_model_id_for_tokenizer=base_model_name # Stripped model ID for tokenizer ), media_type="text/event-stream" ) else: # Regular OpenAI streaming vertex_log('info', f"INFO: OpenAI True Streaming ENABLED for model '{request.model}'.") async def openai_true_stream_generator(): # Renamed to avoid conflict try: # Ensure stream=True is explicitly passed for real streaming openai_params_for_true_stream = {**openai_params, "stream": True} stream_response = await openai_client.chat.completions.create( **openai_params_for_true_stream, extra_body=openai_extra_body ) async for chunk in stream_response: try: chunk_as_dict = chunk.model_dump(exclude_unset=True, exclude_none=True) choices = chunk_as_dict.get('choices') if choices and isinstance(choices, list) and len(choices) > 0: delta = choices[0].get('delta') if delta and isinstance(delta, dict): extra_content = delta.get('extra_content') if isinstance(extra_content, dict): google_content = extra_content.get('google') if isinstance(google_content, dict) and google_content.get('thought') is True: reasoning_text = delta.get('content') if reasoning_text is not None: delta['reasoning_content'] = reasoning_text if 'content' in delta: del delta['content'] if 'extra_content' in delta: del delta['extra_content'] # vertex_log('debug', f"DEBUG OpenAI Stream Chunk: {chunk_as_dict}") # Potential verbose log yield f"data: {json.dumps(chunk_as_dict)}\n\n" except Exception as chunk_processing_error: error_msg_chunk = f"Error processing/serializing OpenAI chunk for {request.model}: {str(chunk_processing_error)}. Chunk: {str(chunk)[:200]}" vertex_log('error', error_msg_chunk) if len(error_msg_chunk) > 1024: error_msg_chunk = error_msg_chunk[:1024] + "..." error_response_chunk = create_openai_error_response(500, error_msg_chunk, "server_error") json_payload_for_chunk_error = json.dumps(error_response_chunk) yield f"data: {json_payload_for_chunk_error}\n\n" yield "data: [DONE]\n\n" return yield "data: [DONE]\n\n" except Exception as stream_error: original_error_message = str(stream_error) if len(original_error_message) > 1024: original_error_message = original_error_message[:1024] + "..." error_msg_stream = f"Error during OpenAI client true streaming for {request.model}: {original_error_message}" vertex_log('error', error_msg_stream) error_response_content = create_openai_error_response(500, error_msg_stream, "server_error") json_payload_for_stream_error = json.dumps(error_response_content) yield f"data: {json_payload_for_stream_error}\n\n" yield "data: [DONE]\n\n" return StreamingResponse(openai_true_stream_generator(), media_type="text/event-stream") else: # Not streaming (is_openai_direct_model and not request.stream) try: # Ensure stream=False is explicitly passed for non-streaming openai_params_for_non_stream = {**openai_params, "stream": False} response = await openai_client.chat.completions.create( **openai_params_for_non_stream, # Removed redundant **openai_params spread extra_body=openai_extra_body ) response_dict = response.model_dump(exclude_unset=True, exclude_none=True) try: # Extract reasoning directly from the response choices = response_dict.get('choices') if choices and isinstance(choices, list) and len(choices) > 0: message_dict = choices[0].get('message') if message_dict and isinstance(message_dict, dict): # Always remove extra_content from the message if it exists if 'extra_content' in message_dict: extra_content = message_dict.get('extra_content', {}) google_content = extra_content.get('google', {}) # If this is a thought, move content to reasoning_content if google_content and google_content.get('thought') is True: message_dict['reasoning_content'] = message_dict.get('content', '') message_dict['content'] = '' # Always remove extra_content del message_dict['extra_content'] vertex_log('debug', "DEBUG: Processed 'extra_content' from response message.") except Exception as e_reasoning_processing: vertex_log('warning', f"WARNING: Error during non-streaming reasoning processing for model {request.model} due to: {e_reasoning_processing}.") return JSONResponse(content=response_dict) except Exception as generate_error: error_msg_generate = f"Error calling OpenAI client for {request.model}: {str(generate_error)}" vertex_log('error', error_msg_generate) error_response = create_openai_error_response(500, error_msg_generate, "server_error") return JSONResponse(status_code=500, content=error_response) elif is_auto_model: vertex_log('info', f"Processing auto model: {request.model}") attempts = [ {"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c}, {"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": encryption_instructions_placeholder}}, {"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c} ] last_err = None for attempt in attempts: vertex_log('info', f"Auto-mode attempting: '{attempt['name']}' for model {attempt['model']}") current_gen_config = attempt["config_modifier"](generation_config.copy()) try: # Pass is_auto_attempt=True for auto-mode calls return await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request, is_auto_attempt=True) except Exception as e_auto: last_err = e_auto vertex_log('info', f"Auto-attempt '{attempt['name']}' for model {attempt['model']} failed: {e_auto}") await asyncio.sleep(1) vertex_log('info', f"All auto attempts failed. Last error: {last_err}") err_msg = f"All auto-mode attempts failed for model {request.model}. Last error: {str(last_err)}" if not request.stream and last_err: return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error")) elif request.stream: # This is the final error handling for auto-mode if all attempts fail AND it was a streaming request async def final_auto_error_stream(): err_content = create_openai_error_response(500, err_msg, "server_error") json_payload_final_auto_error = json.dumps(err_content) # Log the final error being sent to client after all auto-retries failed vertex_log('debug', f"DEBUG: Auto-mode all attempts failed. Yielding final error JSON: {json_payload_final_auto_error}") yield f"data: {json_payload_final_auto_error}\n\n" yield "data: [DONE]\n\n" return StreamingResponse(final_auto_error_stream(), media_type="text/event-stream") return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error")) else: # Not an auto model current_prompt_func = create_gemini_prompt # Determine the actual model string to call the API with (e.g., "gemini-1.5-pro-search") api_model_string = request.model if is_grounded_search: search_tool = types.Tool(google_search=types.GoogleSearch()) generation_config["tools"] = [search_tool] elif is_encrypted_model: generation_config["system_instruction"] = encryption_instructions_placeholder current_prompt_func = create_encrypted_gemini_prompt elif is_encrypted_full_model: generation_config["system_instruction"] = encryption_instructions_placeholder current_prompt_func = create_encrypted_full_gemini_prompt elif is_nothinking_model: # 为gemini-2.5-pro-preview-06-05设置特定的thinking_budget if base_model_name == "gemini-2.5-pro-preview-06-05": generation_config["thinking_config"] = {"thinking_budget": 128} else: generation_config["thinking_config"] = {"thinking_budget": 0} elif is_max_thinking_model: # 为gemini-2.5-pro-preview-06-05设置特定的thinking_budget if base_model_name == "gemini-2.5-pro-preview-06-05": generation_config["thinking_config"] = {"thinking_budget": 32768} else: generation_config["thinking_config"] = {"thinking_budget": 24576} # For non-auto models, the 'base_model_name' might have suffix stripped. # We should use the original 'request.model' for API call if it's a suffixed one, # or 'base_model_name' if it's truly a base model without suffixes. # The current logic uses 'base_model_name' for the API call in the 'else' block. # This means if `request.model` was "gemini-1.5-pro-search", `base_model_name` becomes "gemini-1.5-pro" # but the API call might need the full "gemini-1.5-pro-search". # Let's use `request.model` for the API call here, and `base_model_name` for checks like Express eligibility. # For non-auto mode, is_auto_attempt defaults to False in execute_gemini_call return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request) except Exception as e: error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}" vertex_log('error', error_msg) return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error")) async def _base_fake_stream_engine( api_call_task_creator, extract_text_from_response_func, is_valid_response_func, response_id, sse_model_name, keep_alive_interval_seconds=0, is_auto_attempt=False, reasoning_text_to_yield="", actual_content_text_to_yield="" ): """Base engine for fake streaming that handles common logic for both Gemini and OpenAI.""" try: # Wait for the API call to complete api_response = await api_call_task_creator() # Validate the response if not is_valid_response_func(api_response): error_msg = f"Invalid response structure from API for model {sse_model_name}" vertex_log('error', error_msg) err_resp = create_openai_error_response(500, error_msg, "server_error") yield f"data: {json.dumps(err_resp)}\n\n" yield "data: [DONE]\n\n" return # Get the full text from the response full_text = "" if reasoning_text_to_yield or actual_content_text_to_yield: # If we already have separated reasoning and content, use them if reasoning_text_to_yield: # First yield the reasoning content in a separate chunk reasoning_chunk = { "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{ "index": 0, "delta": {"reasoning_content": reasoning_text_to_yield}, "finish_reason": None }] } yield f"data: {json.dumps(reasoning_chunk)}\n\n" # Then use the actual content for streaming full_text = actual_content_text_to_yield else: # Otherwise extract the full text from the response full_text = extract_text_from_response_func(api_response) if not full_text: # If there's no text to stream, just send an empty delta and finish empty_chunk = { "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{ "index": 0, "delta": {"content": ""}, "finish_reason": "stop" }] } yield f"data: {json.dumps(empty_chunk)}\n\n" yield "data: [DONE]\n\n" return # Simulate streaming by yielding chunks of the full text chunk_size = app_config.FAKE_STREAMING_CHUNK_SIZE delay_per_chunk = app_config.FAKE_STREAMING_DELAY_PER_CHUNK # Initial chunk with role initial_chunk = { "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{ "index": 0, "delta": {"role": "assistant"}, "finish_reason": None }] } yield f"data: {json.dumps(initial_chunk)}\n\n" # Stream the content in chunks for i in range(0, len(full_text), chunk_size): chunk_text = full_text[i:i+chunk_size] content_chunk = { "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{ "index": 0, "delta": {"content": chunk_text}, "finish_reason": None }] } yield f"data: {json.dumps(content_chunk)}\n\n" if i + chunk_size < len(full_text) and delay_per_chunk > 0: await asyncio.sleep(delay_per_chunk) # Final chunk to indicate completion final_chunk = { "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{ "index": 0, "delta": {}, "finish_reason": "stop" }] } yield f"data: {json.dumps(final_chunk)}\n\n" yield "data: [DONE]\n\n" except Exception as e: error_msg = f"Error in _base_fake_stream_engine for model {sse_model_name}: {str(e)}" vertex_log('error', error_msg) if not is_auto_attempt: # Only yield error for non-auto attempts err_resp = create_openai_error_response(500, error_msg, "server_error") yield f"data: {json.dumps(err_resp)}\n\n" yield "data: [DONE]\n\n" async def openai_fake_stream_generator( openai_client: openai.AsyncOpenAI, openai_params: Dict[str, Any], openai_extra_body: Dict[str, Any], request_obj: OpenAIRequest, is_auto_attempt: bool, gcp_credentials: Any, gcp_project_id: str, gcp_location: str, base_model_id_for_tokenizer: str ): api_model_name = openai_params.get("model", "unknown-openai-model") vertex_log('info', f"FAKE STREAMING (OpenAI): Prep for '{request_obj.model}' (API model: '{api_model_name}')") response_id = f"chatcmpl-{int(time.time())}" async def _openai_api_call_wrapper(): params_for_non_stream_call = openai_params.copy() params_for_non_stream_call['stream'] = False _api_call_task = asyncio.create_task( openai_client.chat.completions.create(**params_for_non_stream_call, extra_body=openai_extra_body) ) raw_response = await _api_call_task # Extract reasoning and content directly from the response full_content_from_api = "" reasoning_text = "" if raw_response.choices and raw_response.choices[0].message: # Check for extra_content with google.thought message = raw_response.choices[0].message if hasattr(message, 'extra_content') and message.extra_content: google_content = message.extra_content.get('google', {}) if google_content and google_content.get('thought') is True: reasoning_text = message.content full_content_from_api = "" # Clear content as it's reasoning else: full_content_from_api = message.content else: full_content_from_api = message.content return raw_response, reasoning_text, full_content_from_api temp_task_for_keepalive_check = asyncio.create_task(_openai_api_call_wrapper()) outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS if outer_keep_alive_interval > 0: while not temp_task_for_keepalive_check.done(): keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]} yield f"data: {json.dumps(keep_alive_data)}\n\n" await asyncio.sleep(outer_keep_alive_interval) try: full_api_response, separated_reasoning_text, separated_actual_content_text = await temp_task_for_keepalive_check def _extract_openai_full_text(response: Any) -> str: if response.choices and response.choices[0].message and response.choices[0].message.content is not None: return response.choices[0].message.content return "" def _is_openai_response_valid(response: Any) -> bool: return bool(response.choices and response.choices[0].message is not None) async for chunk in _base_fake_stream_engine( api_call_task_creator=lambda: asyncio.create_task(asyncio.sleep(0, result=full_api_response)), extract_text_from_response_func=_extract_openai_full_text, is_valid_response_func=_is_openai_response_valid, response_id=response_id, sse_model_name=request_obj.model, keep_alive_interval_seconds=0, is_auto_attempt=is_auto_attempt, reasoning_text_to_yield=separated_reasoning_text, actual_content_text_to_yield=separated_actual_content_text ): yield chunk except Exception as e_outer: err_msg_detail = f"Error in openai_fake_stream_generator outer (model: '{request_obj.model}'): {type(e_outer).__name__} - {str(e_outer)}" vertex_log('error', err_msg_detail) sse_err_msg_display = str(e_outer) if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..." err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error") json_payload_error = json.dumps(err_resp_sse) if not is_auto_attempt: yield f"data: {json_payload_error}\n\n" yield "data: [DONE]\n\n"