File size: 9,544 Bytes
7fecea0
 
 
 
 
 
71c32c3
 
1f97f51
7fecea0
 
 
 
 
4c12131
 
 
 
efa8780
7fecea0
b29fa42
7fecea0
314e10e
5d87a8b
314e10e
5d87a8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314e10e
7fecea0
314e10e
7fecea0
314e10e
5d87a8b
7fecea0
 
 
314e10e
7fecea0
 
 
 
314e10e
7fecea0
 
314e10e
7fecea0
 
 
 
 
 
 
 
 
314e10e
7fecea0
 
 
 
 
 
 
 
 
 
314e10e
7fecea0
 
71c32c3
 
 
5d87a8b
71c32c3
 
 
 
 
 
7fecea0
5d87a8b
314e10e
 
7fecea0
314e10e
 
7fecea0
 
 
 
 
4c12131
 
 
5d87a8b
314e10e
 
 
 
 
7fecea0
5d87a8b
71c32c3
5d87a8b
71c32c3
 
314e10e
 
 
 
 
 
 
71c32c3
314e10e
 
71c32c3
7fecea0
 
 
5d87a8b
314e10e
 
7fecea0
 
314e10e
7fecea0
314e10e
 
 
7fecea0
 
314e10e
7fecea0
314e10e
7fecea0
 
314e10e
 
7fecea0
314e10e
 
5d87a8b
7fecea0
314e10e
7fecea0
 
314e10e
5d87a8b
314e10e
5d87a8b
314e10e
 
7fecea0
 
5d87a8b
 
 
314e10e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess

from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

import warnings
warnings.filterwarnings("ignore", message=".*Attempting to use legacy OpenCV backend.*")
warnings.filterwarnings("ignore", message=".*num_frames - 1.*")

MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"

# --- Model Initialization ---
pipe = None
# This check correctly identifies if the Hugging Face Space has a GPU.
if torch.cuda.is_available():
    image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
    vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
    pipe = WanImageToVideoPipeline.from_pretrained(
        MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
    )
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
    pipe.enable_model_cpu_offload()

    try:
        causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
        print("βœ… LoRA downloaded to:", causvid_path)
        pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
        pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
        pipe.fuse_lora()
    except Exception as e:
        import traceback
        print("❌ Error during LoRA loading:")
        traceback.print_exc()
else:
    print("CUDA is not available. This script requires a GPU. Please upgrade your Space hardware.")

# --- Constants and Helper Functions ---
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE = 640, 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL = 24, 8, 240
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h, min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0: return default_h, default_w
    aspect_ratio = orig_h / orig_w
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error calculating new dimensions.")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def export_video_with_ffmpeg(frames, output_path, fps=24):
    try:
        import imageio
        writer = imageio.get_writer(output_path, fps=fps, codec='libx264',
                                   pixelformat='yuv420p', quality=8)
        for frame in frames:
            writer.append_data(np.array(frame))
        writer.close()
    except ImportError:
        export_to_video(frames, output_path, fps=fps)

def generate_video(input_image, prompt, height, width,
                   negative_prompt, duration_seconds,
                   guidance_scale, steps, seed, randomize_seed,
                   progress=gr.Progress(track_tqdm=True)):
    if pipe is None:
        raise gr.Error("Pipeline not initialized. Check logs for GPU availability.")
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    raw_frames = int(round(duration_seconds * FIXED_FPS))
    num_frames = ((raw_frames - 1) // 4) * 4 + 1
    num_frames = np.clip(num_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    if num_frames > 120 and max(target_h, target_w) > 768:
        scale_factor = 768 / max(target_h, target_w)
        target_h = max(MOD_VALUE, int(target_h * scale_factor) // MOD_VALUE * MOD_VALUE)
        target_w = max(MOD_VALUE, int(target_w * scale_factor) // MOD_VALUE * MOD_VALUE)
        gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video.")

    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
    torch.cuda.empty_cache()

    try:
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
            output_frames_list = pipe(
                image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]
    except torch.cuda.OutOfMemoryError:
        raise gr.Error("Out of GPU memory. Try reducing duration or resolution.")
    finally:
        torch.cuda.empty_cache()

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
        export_video_with_ffmpeg(output_frames_list, video_path, fps=FIXED_FPS)
        # Optional: FFmpeg optimization
        # ...
    return video_path, current_seed

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Wan 2.1 I2V FusionX-LoRA")
    gr.Markdown("GPU is required. If this doesn't load, check your Space hardware settings.")
    
    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), step=0.1, value=2, label="Duration (seconds)")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label="Height")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label="Width")
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
            generate_button = gr.Button("Generate Video", variant="primary", interactive=(pipe is not None))
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
            gr.Markdown("### Tips:\n- Longer videos need more memory.\n- 4-8 steps is optimal.")

    input_image_component.upload(fn=handle_image_upload_for_dims_wan, inputs=input_image_component, outputs=[height_input, width_input])
    
    ui_inputs = [input_image_component, prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

if __name__ == "__main__":
    if pipe is not None:
        demo.queue(max_size=3).launch()
    else:
        # This provides a clean message in the UI if the app can't start.
        gr.Markdown("# Application Start Failed").launch()
        gr.Info("A GPU is required to run this application. Please ensure your Hugging Face Space is configured with GPU hardware.")