File size: 9,153 Bytes
7fecea0
 
 
 
 
 
71c32c3
 
1f97f51
5e15674
 
7fecea0
 
 
 
 
4c12131
5e15674
4c12131
efa8780
7fecea0
b29fa42
7fecea0
5e15674
 
5d87a8b
 
5e15674
 
 
 
 
 
 
 
 
 
 
 
 
1f619e0
5e15674
1f619e0
5e15674
 
 
 
 
 
 
 
 
 
 
 
 
 
1f619e0
5e15674
 
 
1f619e0
5e15674
 
 
1f619e0
 
 
 
 
 
 
 
 
 
 
 
 
 
5e15674
1f619e0
 
 
 
7fecea0
5e15674
 
1f619e0
7fecea0
 
 
 
 
4c12131
 
 
5d87a8b
314e10e
 
 
 
 
7fecea0
5d87a8b
71c32c3
1f619e0
71c32c3
1f619e0
314e10e
 
 
 
 
5e15674
 
314e10e
71c32c3
314e10e
 
71c32c3
7fecea0
 
 
5e15674
 
 
 
 
 
1f619e0
7fecea0
 
314e10e
5e15674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fecea0
1f619e0
 
314e10e
7fecea0
 
314e10e
7fecea0
314e10e
7fecea0
 
314e10e
 
7fecea0
314e10e
 
5d87a8b
7fecea0
1f619e0
7fecea0
 
314e10e
5d87a8b
314e10e
5d87a8b
314e10e
 
7fecea0
 
5e15674
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess

# The spaces library IS required for ZeroGPU.
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

import warnings
warnings.filterwarnings("ignore")

MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"

# --- Global variable for the pipeline ---
# We use a global variable to cache the model between calls.
pipe = None

# --- Constants and Helper Functions ---
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE = 640, 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL = 24, 8, 240
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"


def get_duration(duration_seconds):
    """
    Dynamically set the timeout for the @spaces.GPU decorator based on video length.
    """
    if duration_seconds > 7: return 180
    if duration_seconds > 5: return 120
    if duration_seconds > 3: return 90
    return 60

# --- The Main GPU Function ---
# The @spaces.GPU decorator is ESSENTIAL for ZeroGPU.
# It tells the platform that this function needs a GPU.
@spaces.GPU(duration=60) # Default duration, can be updated dynamically
def generate_video(input_image, prompt, height, width,
                   negative_prompt, duration_seconds,
                   guidance_scale, steps, seed, randomize_seed,
                   progress=gr.Progress(track_tqdm=True)):
    
    global pipe
    
    # --- LAZY LOADING of the model ---
    # This block will only run on the very first generation request.
    if pipe is None:
        progress(0, desc="Cold start: Initializing model...")
        print("Cold start: Initializing model pipeline...")
        
        image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
        vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
        
        pipe = WanImageToVideoPipeline.from_pretrained(
            MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
        )
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
        pipe.enable_model_cpu_offload()

        try:
            causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
            pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
            pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
            pipe.fuse_lora()
            print("βœ… LoRA loaded successfully.")
        except Exception as e:
            raise gr.Error(f"Error loading LoRA: {e}")
        
        print("βœ… Pipeline initialized successfully.")

    # Update the GPU duration based on user input for longer videos.
    spaces.set_timeout(get_duration(duration_seconds))
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    raw_frames = int(round(duration_seconds * FIXED_FPS))
    num_frames = ((raw_frames - 1) // 4) * 4 + 1
    num_frames = np.clip(num_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    if num_frames > 120 and max(target_h, target_w) > 768:
        scale_factor = 768 / max(target_h, target_w)
        target_h = max(MOD_VALUE, int(target_h * scale_factor) // MOD_VALUE * MOD_VALUE)
        target_w = max(MOD_VALUE, int(target_w * scale_factor) // MOD_VALUE * MOD_VALUE)
        gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video.")

    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
    
    try:
        torch.cuda.empty_cache()
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
            output_frames_list = pipe(
                image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed),
                callback_on_step_end=lambda p, s, t: progress(s/int(steps))
            ).frames[0]
    except torch.cuda.OutOfMemoryError:
        raise gr.Error("Out of GPU memory. Try reducing duration or resolution.")
    finally:
        torch.cuda.empty_cache()

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
        # (Video export logic is unchanged)
        import imageio
        writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264', pixelformat='yuv420p', quality=8)
        for frame in output_frames_list:
            writer.append_data(np.array(frame))
        writer.close()
        
    return video_path, current_seed

# --- Gradio UI ---
# (Helper functions for UI are unchanged)
def handle_image_upload_for_dims_wan(uploaded_pil_image):
    if uploaded_pil_image is None: return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        orig_w, orig_h = uploaded_pil_image.size
        aspect_ratio = orig_h / orig_w
        calc_h = round(np.sqrt(NEW_FORMULA_MAX_AREA * aspect_ratio))
        calc_w = round(np.sqrt(NEW_FORMULA_MAX_AREA / aspect_ratio))
        calc_h = max(MOD_VALUE, (calc_h // MOD_VALUE) * MOD_VALUE)
        calc_w = max(MOD_VALUE, (calc_w // MOD_VALUE) * MOD_VALUE)
        new_h = int(np.clip(calc_h, SLIDER_MIN_H, SLIDER_MAX_H))
        new_w = int(np.clip(calc_w, SLIDER_MIN_W, SLIDER_MAX_W))
        return gr.update(value=new_h), gr.update(value=new_w)
    except: return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

with gr.Blocks() as demo:
    gr.Markdown("# Wan 2.1 I2V FusionX-LoRA (ZeroGPU Ready)")
    gr.Markdown("The first generation will be slow due to a 'cold start'. Subsequent generations will be much faster.")
    
    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), step=0.1, value=2, label="Duration (seconds)")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label="Height")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label="Width")
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
            gr.Markdown("### Tips:\n- Longer videos need more memory.\n- 4-8 steps is optimal.")

    input_image_component.upload(fn=handle_image_upload_for_dims_wan, inputs=input_image_component, outputs=[height_input, width_input])
    
    ui_inputs = [input_image_component, prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

if __name__ == "__main__":
    demo.queue().launch()