Spaces:
Runtime error
Runtime error
File size: 14,141 Bytes
5751ffd 7fecea0 9f3911d 7fecea0 71c32c3 9f3911d 1f97f51 7fecea0 4c12131 9f3911d 4c12131 efa8780 9f3911d 7fecea0 b29fa42 7fecea0 9f3911d 5751ffd 9f3911d 5751ffd 9f3911d 3ee8e25 5751ffd 9f3911d 5751ffd 9f3911d 5751ffd 9f3911d 5d87a8b 5e15674 9f3911d 5751ffd e1a016b 7fecea0 e1a016b 9f3911d 4c12131 9f3911d e1a016b 3ee8e25 9f3911d 71c32c3 5751ffd 9f3911d 7fecea0 9f3911d e1a016b 5751ffd 5e15674 9f3911d 7fecea0 9f3911d 314e10e 7fecea0 9f3911d 7fecea0 9f3911d 9864165 9f3911d 9864165 9f3911d 9864165 9f3911d 9864165 9f3911d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import warnings
warnings.filterwarnings("ignore", message=".*Attempting to use legacy OpenCV backend.*")
warnings.filterwarnings("ignore", message=".*num_frames - 1.*")
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
# Initialize models with proper dtype handling
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
# Enable memory efficient attention and CPU offloading for large videos
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
try:
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
print("β
LoRA downloaded to:", causvid_path)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
pipe.fuse_lora()
except Exception as e:
import traceback
print("β Error during LoRA loading:")
traceback.print_exc()
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 640
DEFAULT_W_SLIDER_VALUE = 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8 # Minimum 8 frames (~0.33s)
MAX_FRAMES_MODEL = 240 # Maximum 240 frames (10 seconds at 24fps)
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
# Adjust timeout based on video length and complexity
if duration_seconds > 7:
return 180 # 3 minutes for very long videos
elif duration_seconds > 5:
return 120 # 2 minutes for long videos
elif duration_seconds > 3:
return 90 # 1.5 minutes for medium videos
else:
return 60 # 1 minute for short videos
def export_video_with_ffmpeg(frames, output_path, fps=24):
"""Export video using imageio if available, otherwise fall back to OpenCV"""
try:
import imageio
# Use imageio for better quality
writer = imageio.get_writer(output_path, fps=fps, codec='libx264',
pixelformat='yuv420p', quality=8)
for frame in frames:
writer.append_data(np.array(frame))
writer.close()
return True
except ImportError:
# Fall back to OpenCV
export_to_video(frames, output_path, fps=fps)
return False
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds=2,
guidance_scale=1, steps=4,
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
# Calculate frames with proper alignment
raw_frames = int(round(duration_seconds * FIXED_FPS))
# Ensure num_frames-1 is divisible by 4 as required by the model
num_frames = ((raw_frames - 1) // 4) * 4 + 1
num_frames = np.clip(num_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
# Additional check for very long videos
if num_frames > 120:
# For videos longer than 5 seconds, reduce resolution to manage memory
max_dim = max(target_h, target_w)
if max_dim > 768:
scale_factor = 768 / max_dim
target_h = max(MOD_VALUE, (int(target_h * scale_factor) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(target_w * scale_factor) // MOD_VALUE) * MOD_VALUE)
gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video generation")
print(f"Generating {num_frames} frames (requested {raw_frames}) at {target_w}x{target_h}")
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
# Clear GPU cache before generation
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
with torch.inference_mode():
# Generate video with autocast for memory efficiency
with torch.autocast("cuda", dtype=torch.float16):
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
return_dict=True
).frames[0]
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
raise gr.Error("Out of GPU memory. Try reducing the duration or resolution.")
except Exception as e:
torch.cuda.empty_cache()
raise gr.Error(f"Generation failed: {str(e)}")
# Clear cache after generation
if torch.cuda.is_available():
torch.cuda.empty_cache()
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
# Export using imageio if available, otherwise OpenCV
used_imageio = export_video_with_ffmpeg(output_frames_list, video_path, fps=FIXED_FPS)
# Only try FFmpeg optimization if we have a valid video file
if os.path.exists(video_path) and os.path.getsize(video_path) > 0:
try:
# Check if ffmpeg is available
subprocess.run(['ffmpeg', '-version'], capture_output=True, check=True)
optimized_path = video_path + "_opt.mp4"
cmd = [
'ffmpeg',
'-y', # Overwrite without asking
'-i', video_path, # Input file
'-c:v', 'libx264', # Codec
'-pix_fmt', 'yuv420p', # Pixel format
'-profile:v', 'main', # Compatibility profile
'-level', '4.0', # Support for higher resolutions
'-movflags', '+faststart', # Streaming optimized
'-crf', '23', # Quality level
'-preset', 'medium', # Balance between speed and compression
'-maxrate', '10M', # Max bitrate for large videos
'-bufsize', '20M', # Buffer size
optimized_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode == 0 and os.path.exists(optimized_path) and os.path.getsize(optimized_path) > 0:
os.unlink(video_path) # Remove original
video_path = optimized_path
else:
print(f"FFmpeg optimization failed: {result.stderr}")
except (subprocess.CalledProcessError, FileNotFoundError):
print("FFmpeg not available or optimization failed, using original export")
return video_path, current_seed
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) FusionX-LoRA")
gr.Markdown("Generate videos up to 10 seconds long! Longer videos may use reduced resolution for stability.")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), # 0.3s (8 frames)
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), # 10.0s (240 frames)
step=0.1,
value=2, # Default 2 seconds
label="Duration (seconds)",
info=f"Video length: {MIN_FRAMES_MODEL/FIXED_FPS:.1f}-{MAX_FRAMES_MODEL/FIXED_FPS:.1f}s. Longer videos may take more time and use more memory."
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
gr.Markdown("### Tips for best results:")
gr.Markdown("- For videos longer than 5 seconds, consider using lower resolutions (512-768px)")
gr.Markdown("- Clear, simple prompts often work better than complex descriptions")
gr.Markdown("- The model works best with 4-8 inference steps")
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
input_image_component, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
["forg.jpg", "the frog jumps around", 448, 832],
],
inputs=[input_image_component, prompt_input, height_input, width_input],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue(max_size=3).launch() |