Spaces:
Runtime error
Runtime error
Update app_lora.py
Browse files- app_lora.py +58 -100
app_lora.py
CHANGED
@@ -14,180 +14,138 @@ from PIL import Image
|
|
14 |
import random
|
15 |
|
16 |
import warnings
|
17 |
-
warnings.filterwarnings("ignore"
|
18 |
-
warnings.filterwarnings("ignore", message=".*num_frames - 1.*")
|
19 |
|
20 |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
|
21 |
-
|
22 |
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
|
23 |
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
|
24 |
|
25 |
# --- Model Loading at Startup ---
|
26 |
-
# This is the correct pattern for your environment. The model is loaded once
|
27 |
-
# when the Space starts, leading to a longer build but a fast experience for users.
|
28 |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
|
29 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
|
30 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
31 |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
|
32 |
)
|
33 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
|
34 |
-
|
35 |
-
# Enable memory efficient attention and CPU offloading
|
36 |
pipe.enable_model_cpu_offload()
|
37 |
|
38 |
-
#
|
39 |
-
# pipe.enable_vae_slicing()
|
40 |
-
# pipe.enable_vae_tiling()
|
41 |
-
|
42 |
try:
|
43 |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
44 |
print("β
LoRA downloaded to:", causvid_path)
|
45 |
-
|
46 |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
47 |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
|
48 |
pipe.fuse_lora()
|
49 |
-
|
50 |
except Exception as e:
|
51 |
-
|
52 |
-
print("β Error during LoRA loading:")
|
53 |
-
traceback.print_exc()
|
54 |
|
55 |
-
# --- Constants
|
56 |
MOD_VALUE = 32
|
57 |
-
|
58 |
-
|
59 |
-
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
|
60 |
-
|
61 |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
|
62 |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
|
63 |
MAX_SEED = np.iinfo(np.int32).max
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def get_duration(duration_seconds):
|
74 |
-
if duration_seconds > 7: return 180
|
75 |
-
if duration_seconds > 5: return 120
|
76 |
-
if duration_seconds > 3: return 90
|
77 |
-
return 60
|
78 |
-
|
79 |
-
# --- The Main Generation Function ---
|
80 |
-
# The @spaces.GPU decorator is correctly placed here.
|
81 |
-
@spaces.GPU(duration=60)
|
82 |
def generate_video(input_image, prompt, height, width,
|
83 |
-
negative_prompt
|
84 |
-
guidance_scale
|
85 |
-
seed=42, randomize_seed=False,
|
86 |
progress=gr.Progress(track_tqdm=True)):
|
87 |
|
88 |
-
spaces.set_timeout(get_duration(duration_seconds))
|
89 |
-
|
90 |
if input_image is None:
|
91 |
raise gr.Error("Please upload an input image.")
|
92 |
|
93 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
94 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
95 |
-
|
96 |
raw_frames = int(round(duration_seconds * FIXED_FPS))
|
97 |
num_frames = ((raw_frames - 1) // 4) * 4 + 1
|
98 |
-
num_frames = np.clip(num_frames,
|
99 |
|
100 |
if num_frames > 120 and max(target_h, target_w) > 768:
|
101 |
-
|
102 |
-
target_h = max(MOD_VALUE, int(target_h *
|
103 |
-
target_w = max(MOD_VALUE, int(target_w *
|
104 |
-
gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video
|
105 |
|
106 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
107 |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
|
108 |
|
109 |
-
if torch.cuda.is_available():
|
110 |
-
torch.cuda.empty_cache()
|
111 |
-
|
112 |
try:
|
|
|
113 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
|
114 |
-
|
115 |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
|
116 |
height=target_h, width=target_w, num_frames=num_frames,
|
117 |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
|
118 |
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
119 |
return_dict=True
|
120 |
).frames[0]
|
121 |
-
except torch.cuda.OutOfMemoryError:
|
122 |
-
raise gr.Error("Out of GPU memory. Try reducing
|
123 |
except Exception as e:
|
124 |
-
raise gr.Error(f"Generation failed: {
|
125 |
finally:
|
126 |
-
|
127 |
-
torch.cuda.empty_cache()
|
128 |
|
129 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
130 |
video_path = tmpfile.name
|
131 |
import imageio
|
132 |
writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264',
|
133 |
pixelformat='yuv420p', quality=8)
|
134 |
-
for frame in
|
135 |
writer.append_data(np.array(frame))
|
136 |
writer.close()
|
137 |
-
|
138 |
return video_path, current_seed
|
139 |
|
140 |
# --- Gradio UI ---
|
141 |
with gr.Blocks() as demo:
|
142 |
-
gr.Markdown("#
|
143 |
|
144 |
with gr.Row():
|
145 |
with gr.Column():
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
with gr.Accordion("Advanced Settings", open=False):
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
with gr.Row():
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
with gr.Column():
|
160 |
-
|
161 |
-
gr.Markdown("### Tips:\n- For videos >
|
162 |
|
163 |
-
def
|
164 |
-
if img is None: return gr.update(value=
|
165 |
try:
|
166 |
w, h = img.size
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
return gr.update(value=
|
173 |
-
except:
|
174 |
-
|
175 |
-
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
# The gr.Examples requires the files to be in your repo. Commenting out to prevent errors.
|
181 |
-
# gr.Examples(
|
182 |
-
# examples=[
|
183 |
-
# ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
|
184 |
-
# ["forg.jpg", "the frog jumps around", 448, 832],
|
185 |
-
# ],
|
186 |
-
# inputs=[input_image_component, prompt_input, height_input, width_input],
|
187 |
-
# outputs=[video_output, seed_input],
|
188 |
-
# fn=generate_video,
|
189 |
-
# cache_examples="lazy"
|
190 |
-
# )
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
demo.queue(max_size=3).launch()
|
|
|
14 |
import random
|
15 |
|
16 |
import warnings
|
17 |
+
warnings.filterwarnings("ignore")
|
|
|
18 |
|
19 |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
|
|
|
20 |
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
|
21 |
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
|
22 |
|
23 |
# --- Model Loading at Startup ---
|
|
|
|
|
24 |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
|
25 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
|
26 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
27 |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
|
28 |
)
|
29 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
|
|
|
|
|
30 |
pipe.enable_model_cpu_offload()
|
31 |
|
32 |
+
# LoRA Loading
|
|
|
|
|
|
|
33 |
try:
|
34 |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
35 |
print("β
LoRA downloaded to:", causvid_path)
|
|
|
36 |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
37 |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
|
38 |
pipe.fuse_lora()
|
|
|
39 |
except Exception as e:
|
40 |
+
print(f"β Error during LoRA loading: {e}")
|
|
|
|
|
41 |
|
42 |
+
# --- Constants ---
|
43 |
MOD_VALUE = 32
|
44 |
+
DEFAULT_H, DEFAULT_W = 640, 1024
|
45 |
+
MAX_AREA = DEFAULT_H * DEFAULT_W
|
|
|
|
|
46 |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
|
47 |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
|
48 |
MAX_SEED = np.iinfo(np.int32).max
|
49 |
+
FIXED_FPS, MIN_FRAMES, MAX_FRAMES = 24, 8, 240
|
50 |
+
default_prompt = "make this image come alive, cinematic motion, smooth animation"
|
51 |
+
default_neg_prompt = "static, blurry, watermark, text, signature, ugly, deformed"
|
52 |
+
|
53 |
+
# --- Main Generation Function ---
|
54 |
+
# THE FIX: Set a generous, FIXED duration for the decorator. 180 seconds (3 minutes)
|
55 |
+
# should be enough for the longest video generation.
|
56 |
+
@spaces.GPU(duration=180)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def generate_video(input_image, prompt, height, width,
|
58 |
+
negative_prompt, duration_seconds,
|
59 |
+
guidance_scale, steps, seed, randomize_seed,
|
|
|
60 |
progress=gr.Progress(track_tqdm=True)):
|
61 |
|
|
|
|
|
62 |
if input_image is None:
|
63 |
raise gr.Error("Please upload an input image.")
|
64 |
|
65 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
66 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
|
|
67 |
raw_frames = int(round(duration_seconds * FIXED_FPS))
|
68 |
num_frames = ((raw_frames - 1) // 4) * 4 + 1
|
69 |
+
num_frames = np.clip(num_frames, MIN_FRAMES, MAX_FRAMES)
|
70 |
|
71 |
if num_frames > 120 and max(target_h, target_w) > 768:
|
72 |
+
scale = 768 / max(target_h, target_w)
|
73 |
+
target_h = max(MOD_VALUE, int(target_h * scale) // MOD_VALUE * MOD_VALUE)
|
74 |
+
target_w = max(MOD_VALUE, int(target_w * scale) // MOD_VALUE * MOD_VALUE)
|
75 |
+
gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video.")
|
76 |
|
77 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
78 |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
|
79 |
|
|
|
|
|
|
|
80 |
try:
|
81 |
+
torch.cuda.empty_cache()
|
82 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
|
83 |
+
frames = pipe(
|
84 |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
|
85 |
height=target_h, width=target_w, num_frames=num_frames,
|
86 |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
|
87 |
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
88 |
return_dict=True
|
89 |
).frames[0]
|
90 |
+
except torch.cuda.OutOfMemoryError as e:
|
91 |
+
raise gr.Error("Out of GPU memory. Try reducing duration or resolution.")
|
92 |
except Exception as e:
|
93 |
+
raise gr.Error(f"Generation failed: {e}")
|
94 |
finally:
|
95 |
+
torch.cuda.empty_cache()
|
|
|
96 |
|
97 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
98 |
video_path = tmpfile.name
|
99 |
import imageio
|
100 |
writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264',
|
101 |
pixelformat='yuv420p', quality=8)
|
102 |
+
for frame in frames:
|
103 |
writer.append_data(np.array(frame))
|
104 |
writer.close()
|
105 |
+
|
106 |
return video_path, current_seed
|
107 |
|
108 |
# --- Gradio UI ---
|
109 |
with gr.Blocks() as demo:
|
110 |
+
gr.Markdown("# Wan 2.1 I2V FusionX-LoRA")
|
111 |
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
+
input_image_comp = gr.Image(type="pil", label="Input Image")
|
115 |
+
prompt_comp = gr.Textbox(label="Prompt", value=default_prompt)
|
116 |
+
duration_comp = gr.Slider(minimum=round(MIN_FRAMES/FIXED_FPS, 1), maximum=round(MAX_FRAMES/FIXED_FPS, 1), step=0.1, value=2, label="Duration (s)")
|
117 |
with gr.Accordion("Advanced Settings", open=False):
|
118 |
+
neg_prompt_comp = gr.Textbox(label="Negative Prompt", value=default_neg_prompt, lines=3)
|
119 |
+
seed_comp = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
120 |
+
rand_seed_comp = gr.Checkbox(label="Randomize seed", value=True)
|
121 |
with gr.Row():
|
122 |
+
height_comp = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H, label="Height")
|
123 |
+
width_comp = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W, label="Width")
|
124 |
+
steps_comp = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Steps")
|
125 |
+
guidance_comp = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="CFG Scale", visible=False)
|
126 |
+
gen_button = gr.Button("Generate Video", variant="primary")
|
127 |
with gr.Column():
|
128 |
+
video_comp = gr.Video(label="Generated Video", autoplay=True, interactive=False)
|
129 |
+
gr.Markdown("### Tips:\n- For long videos (>5s), consider lower resolutions.\n- 4-8 steps is often optimal.")
|
130 |
|
131 |
+
def handle_upload(img):
|
132 |
+
if img is None: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
|
133 |
try:
|
134 |
w, h = img.size
|
135 |
+
a = h / w
|
136 |
+
h_new = int(np.sqrt(MAX_AREA * a))
|
137 |
+
w_new = int(np.sqrt(MAX_AREA / a))
|
138 |
+
h_final = max(MOD_VALUE, h_new // MOD_VALUE * MOD_VALUE)
|
139 |
+
w_final = max(MOD_VALUE, w_new // MOD_VALUE * MOD_VALUE)
|
140 |
+
return gr.update(value=h_final), gr.update(value=w_final)
|
141 |
+
except Exception:
|
142 |
+
return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
|
143 |
+
|
144 |
+
input_image_comp.upload(handle_upload, inputs=input_image_comp, outputs=[height_comp, width_comp])
|
145 |
|
146 |
+
inputs = [input_image_comp, prompt_comp, height_comp, width_comp, neg_prompt_comp, duration_comp, guidance_comp, steps_comp, seed_comp, rand_seed_comp]
|
147 |
+
outputs = [video_comp, seed_comp]
|
148 |
+
gen_button.click(fn=generate_video, inputs=inputs, outputs=outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
if __name__ == "__main__":
|
151 |
demo.queue(max_size=3).launch()
|