Lenylvt's picture
Update app.py
c4001d6 verified
raw
history blame
1.88 kB
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate_from_srt(file_content, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
# Process the SRT file content as needed before using it as a prompt
# For example, extracting text and removing timestamps if necessary
# Directly using the file content for simplicity here
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(file_content, [])
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
def handle_file(file_info):
# Directly use the file content if it's a text file
if isinstance(file_info, str):
file_content = file_info
else:
# If file_info is not a string, it might be a binary file
file_content = file_info.decode('utf-8')
return generate_from_srt(file_content)
iface = gr.Interface(
fn=handle_file,
inputs=gr.File(label="Upload SRT File", type="text"), # Specify file type as text
outputs="text",
title="SRT File Translation",
concurrency_limit=20,
)
iface.launch()