from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate_from_srt(file_path, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): # Assuming the file content is directly usable as a prompt with open(file_path, "r", encoding="utf-8") as file: file_content = file.load() # Process the SRT file content as needed before using it as a prompt # For example, extracting text and removing timestamps if necessary # Here, directly using the file content for simplicity temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(file_content, []) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text return output def handle_file(file, **kwargs): # Save the uploaded file temporarily to read it file_path = file.name with open(file_path, "wb") as f: f.write(file.read()) return generate_from_srt(file_path, **kwargs) iface = gr.Interface( fn=handle_file, inputs=gr.File(label="Upload SRT File"), outputs="text", title="SRT File Translation", concurrency_limit=20, ) iface.launch()