Spaces:
Sleeping
Sleeping
import requests | |
import pandas as pd | |
import gradio as gr | |
from transformers import MarianMTModel, MarianTokenizer | |
# Fetch and parse language options from the provided URL | |
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md" | |
response = requests.get(url) | |
# Assuming the response content is a Markdown table, convert it to a DataFrame | |
df = pd.read_csv(url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all') | |
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name'] | |
df['ISO 639-1'] = df['ISO 639-1'].str.strip() | |
# Prepare language options for the dropdown | |
language_options = [(row['ISO 639-1'], f"{row['Language Name']} ({row['ISO 639-1']})") for index, row in df.iterrows()] | |
# Your translate_text function and Gradio interface setup goes here | |
# Replace the previous static language_options list with the dynamic one created above | |
# Example translate_text function placeholder | |
def translate_text(text, source_language, target_language): | |
return "Translation function implementation" | |
# Create dropdowns for source and target languages, using only the codes for value | |
source_language_dropdown = gr.Dropdown(choices=language_options, label="Source Language") | |
target_language_dropdown = gr.Dropdown(choices=language_options, label="Target Language") | |
# Define the interface | |
iface = gr.Interface( | |
fn=translate_text, | |
inputs=[gr.Textbox(lines=2, placeholder="Enter text to translate..."), source_language_dropdown, target_language_dropdown], | |
outputs=gr.Textbox(), | |
title="Text Translator with Dynamic Language Options", | |
description="Select source and target languages to translate text." | |
) | |
# Launch the app | |
iface.launch() |