Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
from transformers import MarianMTModel, MarianTokenizer
|
5 |
+
|
6 |
+
# Function to fetch and parse language options
|
7 |
+
def fetch_languages(url):
|
8 |
+
response = requests.get(url)
|
9 |
+
if response.status_code == 200:
|
10 |
+
df = pd.read_csv(response.content.decode('utf-8'), delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
|
11 |
+
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
|
12 |
+
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
|
13 |
+
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name']}") for index, row in df.iterrows()]
|
14 |
+
return language_options
|
15 |
+
else:
|
16 |
+
return []
|
17 |
+
|
18 |
+
# Fetching language options
|
19 |
+
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
|
20 |
+
language_options = fetch_languages(url)
|
21 |
+
|
22 |
+
# Streamlit UI components
|
23 |
+
st.title("Text Translator with Dynamic Language Options")
|
24 |
+
st.write("Select source and target languages to translate text.")
|
25 |
+
|
26 |
+
source_language = st.selectbox("Select Source Language", options=language_options, format_func=lambda x: x[1])
|
27 |
+
target_language = st.selectbox("Select Target Language", options=language_options, format_func=lambda x: x[1])
|
28 |
+
text = st.text_area("Enter text to translate...", height=150)
|
29 |
+
|
30 |
+
def translate_text(text, source_language_code, target_language_code):
|
31 |
+
model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}"
|
32 |
+
if source_language_code == target_language_code:
|
33 |
+
return "Translation between the same languages is not supported."
|
34 |
+
try:
|
35 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
36 |
+
model = MarianMTModel.from_pretrained(model_name)
|
37 |
+
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512))
|
38 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
39 |
+
return translated_text
|
40 |
+
except Exception as e:
|
41 |
+
return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}"
|
42 |
+
|
43 |
+
if st.button("Translate"):
|
44 |
+
source_language_code, _ = source_language
|
45 |
+
target_language_code, _ = target_language
|
46 |
+
translation = translate_text(text, source_language_code, target_language_code)
|
47 |
+
st.text_area("Translated Text", value=translation, height=150, key="translation_output")
|