Lenylvt commited on
Commit
1adf2fc
·
verified ·
1 Parent(s): 3eebf5b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import requests
4
+ from transformers import MarianMTModel, MarianTokenizer
5
+
6
+ # Function to fetch and parse language options
7
+ def fetch_languages(url):
8
+ response = requests.get(url)
9
+ if response.status_code == 200:
10
+ df = pd.read_csv(response.content.decode('utf-8'), delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
11
+ df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
12
+ df['ISO 639-1'] = df['ISO 639-1'].str.strip()
13
+ language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name']}") for index, row in df.iterrows()]
14
+ return language_options
15
+ else:
16
+ return []
17
+
18
+ # Fetching language options
19
+ url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
20
+ language_options = fetch_languages(url)
21
+
22
+ # Streamlit UI components
23
+ st.title("Text Translator with Dynamic Language Options")
24
+ st.write("Select source and target languages to translate text.")
25
+
26
+ source_language = st.selectbox("Select Source Language", options=language_options, format_func=lambda x: x[1])
27
+ target_language = st.selectbox("Select Target Language", options=language_options, format_func=lambda x: x[1])
28
+ text = st.text_area("Enter text to translate...", height=150)
29
+
30
+ def translate_text(text, source_language_code, target_language_code):
31
+ model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}"
32
+ if source_language_code == target_language_code:
33
+ return "Translation between the same languages is not supported."
34
+ try:
35
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
36
+ model = MarianMTModel.from_pretrained(model_name)
37
+ translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512))
38
+ translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
39
+ return translated_text
40
+ except Exception as e:
41
+ return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}"
42
+
43
+ if st.button("Translate"):
44
+ source_language_code, _ = source_language
45
+ target_language_code, _ = target_language
46
+ translation = translate_text(text, source_language_code, target_language_code)
47
+ st.text_area("Translated Text", value=translation, height=150, key="translation_output")