Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from typing import List
|
6 |
+
from contextlib import asynccontextmanager
|
7 |
+
|
8 |
+
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
|
9 |
+
|
10 |
+
# --- Configuration ---
|
11 |
+
MODEL_ID = os.getenv("MODEL_ID", "meta-llama/Llama-3.1-8B-Instruct")
|
12 |
+
engine = None
|
13 |
+
|
14 |
+
# --- Lifespan Manager for Model Loading ---
|
15 |
+
# This is the correct way to load a model on startup in FastAPI.
|
16 |
+
@asynccontextmanager
|
17 |
+
async def lifespan(app: FastAPI):
|
18 |
+
global engine
|
19 |
+
print(f"Lifespan startup: Loading model {MODEL_ID}...")
|
20 |
+
engine_args = AsyncEngineArgs(
|
21 |
+
model=MODEL_ID,
|
22 |
+
tokenizer="hf-internal-testing/llama-tokenizer",
|
23 |
+
tensor_parallel_size=1,
|
24 |
+
gpu_memory_utilization=0.90,
|
25 |
+
download_dir="/data/huggingface" # Cache directory inside the container
|
26 |
+
)
|
27 |
+
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
28 |
+
print("Model loading complete.")
|
29 |
+
yield
|
30 |
+
# Cleanup logic can be added here if needed
|
31 |
+
|
32 |
+
# 1. Create the FastAPI app instance FIRST
|
33 |
+
app = FastAPI(lifespan=lifespan)
|
34 |
+
|
35 |
+
# --- API Data Models ---
|
36 |
+
class ChatMessage(BaseModel):
|
37 |
+
role: str
|
38 |
+
content: str
|
39 |
+
|
40 |
+
class ChatCompletionRequest(BaseModel):
|
41 |
+
messages: List[ChatMessage]
|
42 |
+
model: str = MODEL_ID
|
43 |
+
temperature: float = 0.7
|
44 |
+
max_tokens: int = 1024
|
45 |
+
|
46 |
+
# 2. Define the API endpoint on the FastAPI `app` object
|
47 |
+
@app.post("/v1/chat/completions")
|
48 |
+
async def chat_completions(request: ChatCompletionRequest):
|
49 |
+
if not engine:
|
50 |
+
return {"error": "Model is not ready or has failed to load."}, 503
|
51 |
+
|
52 |
+
user_prompt = request.messages[-1].content
|
53 |
+
sampling_params = SamplingParams(temperature=request.temperature, max_tokens=request.max_tokens)
|
54 |
+
request_id = f"api-{os.urandom(4).hex()}"
|
55 |
+
|
56 |
+
results_generator = engine.generate(user_prompt, sampling_params, request_id)
|
57 |
+
final_output = await results_generator
|
58 |
+
|
59 |
+
return {
|
60 |
+
"choices": [{"message": {"role": "assistant", "content": final_output.outputs[0].text}}]
|
61 |
+
}
|
62 |
+
|
63 |
+
# 3. Create the Gradio UI in a separate object
|
64 |
+
async def gradio_predict(prompt: str):
|
65 |
+
if not engine:
|
66 |
+
yield "Model is not ready. Please wait a few moments after startup."
|
67 |
+
return
|
68 |
+
|
69 |
+
sampling_params = SamplingParams(temperature=0.7, max_tokens=1024)
|
70 |
+
stream = engine.generate(prompt, sampling_params, f"gradio-req-{os.urandom(4).hex()}")
|
71 |
+
|
72 |
+
async for result in stream:
|
73 |
+
yield result.outputs[0].text
|
74 |
+
|
75 |
+
gradio_ui = gr.Blocks()
|
76 |
+
with gradio_ui:
|
77 |
+
gr.Markdown(f"# VLLM Server for {MODEL_ID}")
|
78 |
+
gr.Markdown("This UI and the `/v1/chat/completions` API are served from the same container.")
|
79 |
+
with gr.Row():
|
80 |
+
inp = gr.Textbox(lines=4, label="Input")
|
81 |
+
out = gr.Textbox(lines=10, label="Output", interactive=False)
|
82 |
+
btn = gr.Button("Generate")
|
83 |
+
btn.click(fn=gradio_predict, inputs=inp, outputs=out)
|
84 |
+
|
85 |
+
# 4. Mount the Gradio UI onto the FastAPI app at the root path
|
86 |
+
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|