Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import os
|
2 |
import logging
|
|
|
3 |
from logging.handlers import RotatingFileHandler
|
4 |
-
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, BitsAndBytesConfig
|
7 |
from langchain_huggingface import ChatHuggingFace
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
from langchain.chains import LLMChain
|
10 |
|
11 |
-
#
|
12 |
log_file = '/tmp/app_debug.log'
|
13 |
logger = logging.getLogger(__name__)
|
14 |
logger.setLevel(logging.DEBUG)
|
@@ -18,67 +19,75 @@ logger.addHandler(file_handler)
|
|
18 |
|
19 |
logger.debug("Application started")
|
20 |
|
|
|
21 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
22 |
-
|
23 |
-
|
24 |
-
template = """<|im_start|>system\n{system_prompt}\n<|im_end|>\n{history}<|im_start|>user\n{human_input}\n<|im_end|>\n<|im_start|>assistant\n"""
|
25 |
-
prompt = PromptTemplate(template=template, input_variables=["system_prompt", "history", "human_input"])
|
26 |
-
|
27 |
-
def format_history(history):
|
28 |
-
return "".join([f"<|im_start|>user\n{h[0]}\n<|im_end|>\n<|im_start|>assistant\n{h[1]}\n<|im_end|>\n" for h in history])
|
29 |
-
|
30 |
-
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
31 |
-
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'")
|
32 |
-
|
33 |
-
chat_model.temperature = temperature
|
34 |
-
chat_model.max_new_tokens = max_new_tokens
|
35 |
-
chat_model.top_k = top_k
|
36 |
-
chat_model.repetition_penalty = repetition_penalty
|
37 |
-
chat_model.top_p = top_p
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
try:
|
42 |
-
formatted_history = format_history(history)
|
43 |
-
for chunk in chain.stream({"system_prompt": system_prompt, "history": formatted_history, "human_input": message}):
|
44 |
-
yield chunk["text"]
|
45 |
-
logger.debug(f"Prediction completed successfully for message: '{message}'")
|
46 |
-
except Exception as e:
|
47 |
-
logger.exception(f"Error during prediction: {str(e)}")
|
48 |
-
yield "An error occurred during processing."
|
49 |
|
|
|
50 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
|
|
51 |
chat_model = ChatHuggingFace(
|
52 |
model_name=MODEL_ID,
|
53 |
-
tokenizer=tokenizer,
|
54 |
model_kwargs={
|
55 |
"device_map": "auto",
|
56 |
-
"quantization_config":
|
57 |
-
|
|
|
|
|
58 |
)
|
59 |
|
60 |
logger.debug("Model and tokenizer loaded successfully")
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
gr.Slider(1, 80, 40, label="Top K sampling"),
|
78 |
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
79 |
-
gr.Slider(0, 1, 0.95, label="Top P sampling")
|
80 |
],
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
from threading import Thread
|
4 |
from logging.handlers import RotatingFileHandler
|
5 |
+
import torch
|
6 |
import gradio as gr
|
7 |
from transformers import AutoTokenizer, BitsAndBytesConfig
|
8 |
from langchain_huggingface import ChatHuggingFace
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from langchain.chains import LLMChain
|
11 |
|
12 |
+
# Logging setup
|
13 |
log_file = '/tmp/app_debug.log'
|
14 |
logger = logging.getLogger(__name__)
|
15 |
logger.setLevel(logging.DEBUG)
|
|
|
19 |
|
20 |
logger.debug("Application started")
|
21 |
|
22 |
+
# Define model parameters
|
23 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
24 |
+
CONTEXT_LENGTH = 16000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Configuration for 4-bit quantization
|
27 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Load tokenizer
|
30 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
31 |
+
|
32 |
+
# Initialize HuggingFace Chat model with LangChain
|
33 |
chat_model = ChatHuggingFace(
|
34 |
model_name=MODEL_ID,
|
|
|
35 |
model_kwargs={
|
36 |
"device_map": "auto",
|
37 |
+
"quantization_config": quantization_config,
|
38 |
+
"attn_implementation": "flash_attention_2",
|
39 |
+
},
|
40 |
+
tokenizer=tokenizer
|
41 |
)
|
42 |
|
43 |
logger.debug("Model and tokenizer loaded successfully")
|
44 |
|
45 |
+
# Define the conversation template for LangChain
|
46 |
+
template = """<|im_start|>system
|
47 |
+
{system_prompt}
|
48 |
+
<|im_end|>
|
49 |
+
{history}
|
50 |
+
<|im_start|>user
|
51 |
+
{human_input}
|
52 |
+
<|im_end|>
|
53 |
+
<|im_start|>assistant"""
|
54 |
+
|
55 |
+
# Create LangChain prompt and chain
|
56 |
+
prompt = PromptTemplate(template=template, input_variables=["system_prompt", "history", "human_input"])
|
57 |
+
chain = LLMChain(llm=chat_model, prompt=prompt)
|
58 |
+
|
59 |
+
# Format the conversation history
|
60 |
+
def format_history(history):
|
61 |
+
formatted = ""
|
62 |
+
for human, ai in history:
|
63 |
+
formatted += f"<|im_start|>user\n{human}\n<|im_end|>\n<|im_start|>assistant\n{ai}\n<|im_end|>\n"
|
64 |
+
return formatted
|
65 |
+
|
66 |
+
# Prediction function using LangChain and model
|
67 |
+
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
68 |
+
formatted_history = format_history(history)
|
69 |
+
|
70 |
+
try:
|
71 |
+
result = chain.run({"system_prompt": system_prompt, "history": formatted_history, "human_input": message})
|
72 |
+
return result
|
73 |
+
except Exception as e:
|
74 |
+
logger.exception(f"Error during prediction: {e}")
|
75 |
+
return "An error occurred."
|
76 |
+
|
77 |
+
# Gradio UI
|
78 |
+
gr.Interface(
|
79 |
+
fn=predict,
|
80 |
+
inputs=[
|
81 |
+
gr.Textbox(label="User input"),
|
82 |
+
gr.State(),
|
83 |
+
gr.Textbox("You are a helpful coding assistant", label="System prompt"),
|
84 |
+
gr.Slider(0, 1, 0.7, label="Temperature"),
|
85 |
+
gr.Slider(128, 2048, 1024, label="Max new tokens"),
|
86 |
gr.Slider(1, 80, 40, label="Top K sampling"),
|
87 |
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
88 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling")
|
89 |
],
|
90 |
+
outputs="text",
|
91 |
+
title="Qwen2.5-Coder-7B-Instruct with LangChain",
|
92 |
+
live=True,
|
93 |
+
).launch()
|