Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,93 +1,136 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
|
|
|
| 3 |
from threading import Thread
|
|
|
|
| 4 |
from logging.handlers import RotatingFileHandler
|
|
|
|
| 5 |
import torch
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig,
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# Logging setup
|
| 10 |
log_file = '/tmp/app_debug.log'
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
logger.setLevel(logging.DEBUG)
|
| 13 |
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
|
| 14 |
-
file_handler.
|
|
|
|
|
|
|
| 15 |
logger.addHandler(file_handler)
|
| 16 |
|
| 17 |
logger.debug("Application started")
|
| 18 |
|
| 19 |
-
# Define model parameters
|
| 20 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
|
|
|
|
|
|
| 21 |
CONTEXT_LENGTH = 16000
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
logger.debug("
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
model=model,
|
| 52 |
-
tokenizer=tokenizer,
|
| 53 |
-
max_length=CONTEXT_LENGTH,
|
| 54 |
-
temperature=0.7,
|
| 55 |
-
top_k=50,
|
| 56 |
-
top_p=0.9,
|
| 57 |
-
repetition_penalty=1.2,
|
| 58 |
-
)
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
except Exception as e:
|
| 73 |
-
logger.exception(f"Error during prediction: {e}")
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
gr.Slider(1, 80, 40, label="Top K sampling"),
|
| 84 |
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
| 85 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
| 86 |
],
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
interface.launch()
|
| 92 |
|
| 93 |
-
logger.debug("Chat interface initialized and launched")
|
|
|
|
| 1 |
import os
|
| 2 |
+
import json
|
| 3 |
+
import subprocess
|
| 4 |
from threading import Thread
|
| 5 |
+
import logging
|
| 6 |
from logging.handlers import RotatingFileHandler
|
| 7 |
+
|
| 8 |
import torch
|
| 9 |
+
import spaces
|
| 10 |
import gradio as gr
|
| 11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
| 12 |
+
|
| 13 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 14 |
|
|
|
|
| 15 |
log_file = '/tmp/app_debug.log'
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
logger.setLevel(logging.DEBUG)
|
| 18 |
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
|
| 19 |
+
file_handler.setLevel(logging.DEBUG)
|
| 20 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 21 |
+
file_handler.setFormatter(formatter)
|
| 22 |
logger.addHandler(file_handler)
|
| 23 |
|
| 24 |
logger.debug("Application started")
|
| 25 |
|
|
|
|
| 26 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
| 27 |
+
CHAT_TEMPLATE = "ChatML"
|
| 28 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 29 |
CONTEXT_LENGTH = 16000
|
| 30 |
|
| 31 |
+
COLOR = "blue"
|
| 32 |
+
EMOJI = "🤖"
|
| 33 |
+
DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks."
|
|
|
|
| 34 |
|
| 35 |
+
@spaces.GPU()
|
| 36 |
+
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
| 37 |
+
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'")
|
| 38 |
+
if CHAT_TEMPLATE == "Auto":
|
| 39 |
+
stop_tokens = [tokenizer.eos_token_id]
|
| 40 |
+
instruction = system_prompt + "\n\n"
|
| 41 |
+
for user, assistant in history:
|
| 42 |
+
instruction += f"User: {user}\nAssistant: {assistant}\n"
|
| 43 |
+
instruction += f"User: {message}\nAssistant:"
|
| 44 |
+
elif CHAT_TEMPLATE == "ChatML":
|
| 45 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
| 46 |
+
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
|
| 47 |
+
for user, assistant in history:
|
| 48 |
+
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
|
| 49 |
+
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
|
| 50 |
+
elif CHAT_TEMPLATE == "Mistral Instruct":
|
| 51 |
+
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
| 52 |
+
instruction = f'<s>[INST] {system_prompt}\n'
|
| 53 |
+
for user, assistant in history:
|
| 54 |
+
instruction += f'{user} [/INST] {assistant}</s>[INST]'
|
| 55 |
+
instruction += f' {message} [/INST]'
|
| 56 |
+
else:
|
| 57 |
+
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
|
| 58 |
+
print(instruction)
|
| 59 |
+
|
| 60 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 61 |
+
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
| 62 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
| 63 |
|
| 64 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
| 65 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
| 66 |
+
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
generate_kwargs = dict(
|
| 69 |
+
input_ids=input_ids.to(device),
|
| 70 |
+
attention_mask=attention_mask.to(device),
|
| 71 |
+
streamer=streamer,
|
| 72 |
+
do_sample=True,
|
| 73 |
+
temperature=temperature,
|
| 74 |
+
max_new_tokens=max_new_tokens,
|
| 75 |
+
top_k=top_k,
|
| 76 |
+
repetition_penalty=repetition_penalty,
|
| 77 |
+
top_p=top_p
|
| 78 |
+
)
|
| 79 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 80 |
+
t.start()
|
| 81 |
+
outputs = []
|
| 82 |
try:
|
| 83 |
+
for new_token in streamer:
|
| 84 |
+
outputs.append(new_token)
|
| 85 |
+
if new_token in stop_tokens:
|
| 86 |
+
break
|
| 87 |
+
yield "".join(outputs)
|
| 88 |
+
logger.debug(f"Prediction completed successfully for message: '{message}'")
|
| 89 |
except Exception as e:
|
| 90 |
+
logger.exception(f"Error during prediction for message '{message}': {str(e)}")
|
| 91 |
+
yield "An error occurred during processing."
|
| 92 |
+
|
| 93 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 94 |
+
quantization_config = BitsAndBytesConfig(
|
| 95 |
+
load_in_4bit=True,
|
| 96 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 97 |
+
)
|
| 98 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 99 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 100 |
+
MODEL_ID,
|
| 101 |
+
device_map="auto",
|
| 102 |
+
quantization_config=quantization_config,
|
| 103 |
+
attn_implementation="flash_attention_2",
|
| 104 |
+
)
|
| 105 |
|
| 106 |
+
logger.debug("Model and tokenizer loaded successfully")
|
| 107 |
+
|
| 108 |
+
gr.ChatInterface(
|
| 109 |
+
predict,
|
| 110 |
+
title=EMOJI + " " + MODEL_NAME,
|
| 111 |
+
description=DESCRIPTION,
|
| 112 |
+
examples=[
|
| 113 |
+
["Can you solve the equation 2x + 3 = 11 for x in Python?"],
|
| 114 |
+
["Write a Java program that checks if a number is even or odd."],
|
| 115 |
+
["How can I reverse a string in JavaScript?"],
|
| 116 |
+
["Create a C++ function to find the factorial of a number."],
|
| 117 |
+
["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."],
|
| 118 |
+
["How do I implement a binary search algorithm in C?"],
|
| 119 |
+
["Write a Ruby script to read a file and count the number of lines in it."],
|
| 120 |
+
["Create a Swift class to represent a bank account with deposit and withdrawal methods."],
|
| 121 |
+
["How do I find the maximum element in an array using Kotlin?"],
|
| 122 |
+
["Write a Rust program to generate the Fibonacci sequence up to the 10th number."]
|
| 123 |
+
],
|
| 124 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
|
| 125 |
+
additional_inputs=[
|
| 126 |
+
gr.Textbox("You are a code assistant.", label="System prompt"),
|
| 127 |
+
gr.Slider(0, 1, 0.3, label="Temperature"),
|
| 128 |
+
gr.Slider(128, 4096, 1024, label="Max new tokens"),
|
| 129 |
gr.Slider(1, 80, 40, label="Top K sampling"),
|
| 130 |
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
| 131 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
| 132 |
],
|
| 133 |
+
theme=gr.themes.Soft(primary_hue=COLOR),
|
| 134 |
+
).queue().launch()
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
logger.debug("Chat interface initialized and launched")
|