File size: 8,879 Bytes
b7b1936
a71f5d3
 
 
 
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71f5d3
 
 
 
 
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71f5d3
 
 
7e6021f
735e830
 
 
 
a71f5d3
 
00bac70
7e6021f
00bac70
4f1d3eb
00bac70
 
a71f5d3
 
 
 
 
 
 
735e830
7e6021f
7358497
735e830
 
 
4f1d3eb
9ed7c82
 
 
 
735e830
a71f5d3
735e830
a71f5d3
735e830
 
a71f5d3
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253ed95
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
735e830
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71f5d3
735e830
a71f5d3
 
 
 
 
 
fb9b3f5
a71f5d3
 
 
 
 
 
 
fb9b3f5
a71f5d3
 
 
00bac70
b7b1936
e5c747c
 
b7b1936
a71f5d3
 
 
 
b7b1936
a71f5d3
 
 
 
 
 
 
b7b1936
a71f5d3
 
 
 
 
 
735e830
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import (
    DiffusionPipeline,
    StableDiffusionPipeline
)    
from peft import PeftModel, LoraConfig


def get_lora_sd_pipeline(
    ckpt_dir='./lora_man_animestyle', 
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default"
    ):

    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
    
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path
    
    if base_model_name_or_path is None:
        raise ValueError("Please specify the base model name or path")
    
    pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
    before_params = pipe.unet.parameters()
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    pipe.unet.set_adapter(adapter_name)
    after_params = pipe.unet.parameters()
    print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
    
    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
    
    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()
    
    return pipe

def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
    tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
    chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
    
    with torch.no_grad():
        embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
    
    return torch.cat(embeds, dim=1)

def align_embeddings(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
    return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
           torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_man_animestyle', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt, 
    negative_prompt, 
    width=512, 
    height=512, 
    num_inference_steps=20, 
    model_id="stable-diffusion-v1-5/stable-diffusion-v1-5", 
    seed=4, 
    guidance_scale=7.5, 
    lora_scale=0.5,
    progress=gr.Progress(track_tqdm=True)
    ):
    
    generator = torch.Generator(device).manual_seed(seed)
    
    if model_id != model_id_default:
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
    else:
        pipe = pipe_default
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
        print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
        print(f"LoRA scale applied: {lora_scale}")
        pipe.fuse_lora(lora_scale=lora_scale)
    
    params = {
        'prompt_embeds': prompt_embeds,
        'negative_prompt_embeds': negative_prompt_embeds,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'width': width,
        'height': height,
        'generator': generator,
    }
    
    return pipe(**params).images[0]


examples = [
    "Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
    "An astronaut riding a green horse.",
    "A delicious ceviche cheesecake slice.",
    "A futuristic sports car is located on the surface of Mars. Stars, planets, mountains and craters are visible.",
]

examples_negative = [
    "blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
    "blurry details, low resolution, poorly defined edges",
    "bad face, bad quality, artifacts, low-res, black and white",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

available_models = [
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "SG161222/Realistic_Vision_V3.0_VAE",
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/sdxl-turbo",
    "runwayml/stable-diffusion-v1-5",
    "sd-legacy/stable-diffusion-v1-5",
    "prompthero/openjourney",
    "stabilityai/stable-diffusion-3-medium-diffusers",
    "stabilityai/stable-diffusion-3.5-large",
    "stabilityai/stable-diffusion-3.5-large-turbo",
]

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")

        with gr.Row():
            model_id = gr.Dropdown(
                label="Model Selection",
                choices=available_models,
                value="stable-diffusion-v1-5/stable-diffusion-v1-5",
                interactive=True
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.5,
            )

        with gr.Row():
            seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
            )
            guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=7.5,  # Replace with defaults that work for your model
            )
            num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=30,  # Replace with defaults that work for your model
            )

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
        gr.Examples(examples=examples_negative, inputs=[negative_prompt])

        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_id,
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()