Spaces:
Running
Running
File size: 5,446 Bytes
a71f5d3 735e830 a71f5d3 735e830 a71f5d3 7e6021f 735e830 a71f5d3 00bac70 7e6021f 00bac70 4f1d3eb 00bac70 a71f5d3 735e830 7e6021f 7358497 735e830 4f1d3eb 9ed7c82 a71f5d3 735e830 a71f5d3 735e830 a71f5d3 735e830 a71f5d3 735e830 7e6021f 735e830 310dfb2 735e830 a71f5d3 735e830 14f4247 735e830 310dfb2 735e830 14f4247 735e830 a71f5d3 735e830 a71f5d3 fb9b3f5 a71f5d3 fb9b3f5 a71f5d3 00bac70 310dfb2 e5c747c a71f5d3 0abc653 a71f5d3 735e830 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global model_repo_id
if model != model_repo_id:
print(model, model_repo_id)
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
pipe = pipe.to(device)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
"An astronaut riding a green horse.",
"A delicious ceviche cheesecake slice.",
"A futuristic sports car is located on the surface of Mars. Stars, planets, mountains and craters are visible.",
]
examples_negative = [
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
"blurry details, low resolution, poorly defined edges",
"bad face, bad quality, artifacts, low-res, black and white",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
available_models = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"SG161222/Realistic_Vision_V3.0_VAE",
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"runwayml/stable-diffusion-v1-5",
"sd-legacy/stable-diffusion-v1-5",
"prompthero/openjourney",
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-3.5-large",
"stabilityai/stable-diffusion-3.5-large-turbo",
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
model = gr.Dropdown(
label="Model Selection",
choices=available_models,
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
interactive=True
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30, # Replace with defaults that work for your model
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|