File size: 5,446 Bytes
a71f5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735e830
a71f5d3
 
 
 
 
 
 
 
 
735e830
 
 
 
 
 
a71f5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e6021f
735e830
 
 
 
a71f5d3
 
00bac70
7e6021f
00bac70
4f1d3eb
00bac70
 
a71f5d3
 
 
 
 
 
 
735e830
7e6021f
7358497
735e830
 
 
4f1d3eb
9ed7c82
 
 
 
a71f5d3
735e830
a71f5d3
735e830
a71f5d3
735e830
 
a71f5d3
735e830
 
 
7e6021f
735e830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310dfb2
735e830
a71f5d3
 
 
 
 
735e830
 
 
 
 
 
14f4247
735e830
 
 
 
310dfb2
735e830
14f4247
735e830
a71f5d3
735e830
a71f5d3
 
 
 
 
 
fb9b3f5
a71f5d3
 
 
 
 
 
 
fb9b3f5
a71f5d3
 
 
00bac70
310dfb2
e5c747c
 
 
a71f5d3
 
 
 
0abc653
a71f5d3
 
 
 
 
 
 
 
 
 
 
 
 
735e830
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model,
    prompt,
    negative_prompt,
    seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):

    global model_repo_id
    if model != model_repo_id:
        print(model, model_repo_id)
        pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
        pipe = pipe.to(device)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
    "An astronaut riding a green horse.",
    "A delicious ceviche cheesecake slice.",
    "A futuristic sports car is located on the surface of Mars. Stars, planets, mountains and craters are visible.",
]

examples_negative = [
    "blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
    "blurry details, low resolution, poorly defined edges",
    "bad face, bad quality, artifacts, low-res, black and white",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

available_models = [
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "SG161222/Realistic_Vision_V3.0_VAE",
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/sdxl-turbo",
    "runwayml/stable-diffusion-v1-5",
    "sd-legacy/stable-diffusion-v1-5",
    "prompthero/openjourney",
    "stabilityai/stable-diffusion-3-medium-diffusers",
    "stabilityai/stable-diffusion-3.5-large",
    "stabilityai/stable-diffusion-3.5-large-turbo",

]

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")

        model = gr.Dropdown(
            label="Model Selection",
            choices=available_models,
            value="stable-diffusion-v1-5/stable-diffusion-v1-5",
            interactive=True
        )
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )

        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
        )
        
        seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
        )
        guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,  # Replace with defaults that work for your model
        )
        num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=30,  # Replace with defaults that work for your model
        )

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
        gr.Examples(examples=examples_negative, inputs=[negative_prompt])
        
        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model,
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()