Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline | |
from peft import PeftModel, LoraConfig | |
import os | |
from PIL import Image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# Инициализация ControlNet | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype) | |
def get_lora_sd_pipeline( | |
lora_dir='./lora_man_animestyle', | |
base_model_name_or_path=None, | |
dtype=torch.float16, | |
adapter_name="default" | |
): | |
unet_sub_dir = os.path.join(lora_dir, "unet") | |
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder") | |
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: | |
config = LoraConfig.from_pretrained(text_encoder_sub_dir) | |
base_model_name_or_path = config.base_model_name_or_path | |
if base_model_name_or_path is None: | |
raise ValueError("Укажите название базовой модели или путь к ней") | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype) | |
before_params = pipe.unet.parameters() | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) | |
pipe.unet.set_adapter(adapter_name) | |
after_params = pipe.unet.parameters() | |
if os.path.exists(text_encoder_sub_dir): | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) | |
if dtype in (torch.float16, torch.bfloat16): | |
pipe.unet.half() | |
pipe.text_encoder.half() | |
return pipe | |
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77): | |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"] | |
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)] | |
with torch.no_grad(): | |
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s] | |
return torch.cat(embeds, dim=1) | |
def align_embeddings(prompt_embeds, negative_prompt_embeds): | |
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) | |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \ | |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1])) | |
pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device) | |
pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained( | |
model_default, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype | |
).to(device) | |
def preprocess_image(image, target_width, target_height): | |
""" | |
Преобразует изображение в формат, подходящий для модели. | |
""" | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
image = image.resize((target_width, target_height), Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 # Нормализация [0, 1] | |
image = image[None].transpose(0, 3, 1, 2) # Преобразуем в (batch, channels, height, width) | |
image = torch.from_numpy(image).to(device) | |
return image | |
def infer( | |
prompt, | |
negative_prompt, | |
width=512, | |
height=512, | |
num_inference_steps=20, | |
model='stable-diffusion-v1-5/stable-diffusion-v1-5', | |
seed=4, | |
guidance_scale=7.5, | |
lora_scale=0.5, | |
use_control_net=False, # Параметр для включения ControlNet | |
control_strength=0.5, # Сила влияния ControlNet | |
source_image=None, # Исходное изображение | |
control_image=None, # Контрольное изображение | |
progress=gr.Progress(track_tqdm=True) | |
): | |
generator = torch.Generator(device).manual_seed(seed) | |
if use_control_net and control_image is not None and source_image is not None: | |
# Преобразуем изображения | |
source_image = preprocess_image(source_image, width, height) | |
control_image = preprocess_image(control_image, width, height) | |
# Создаём пайплайн ControlNet с LoRA, если он ещё не создан | |
if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded: | |
# Загружаем LoRA для UNet | |
pipe_controlnet.unet = PeftModel.from_pretrained( | |
pipe_controlnet.unet, | |
'./lora_man_animestyle/unet', | |
adapter_name="default" | |
) | |
pipe_controlnet.unet.set_adapter("default") | |
# Загружаем LoRA для Text Encoder, если она существует | |
text_encoder_lora_path = './lora_man_animestyle/text_encoder' | |
if os.path.exists(text_encoder_lora_path): | |
pipe_controlnet.text_encoder = PeftModel.from_pretrained( | |
pipe_controlnet.text_encoder, | |
text_encoder_lora_path, | |
adapter_name="default" | |
) | |
pipe_controlnet.text_encoder.set_adapter("default") | |
# Объединяем LoRA с основной моделью | |
pipe_controlnet.fuse_lora(lora_scale=lora_scale) | |
pipe_controlnet.lora_loaded = True # Помечаем, что LoRA загружена | |
# Убедимся, что control_strength имеет тип float | |
control_strength = float(control_strength) | |
# Используем ControlNet с LoRA | |
pipe = pipe_controlnet | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
image = pipe_controlnet( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=source_image, | |
control_image=control_image, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=control_strength, | |
generator=generator | |
).images[0] | |
else: | |
# Стандартная генерация без ControlNet | |
if model != model_default: | |
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device) | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
else: | |
pipe = pipe_default | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
params = { | |
'prompt_embeds': prompt_embeds, | |
'negative_prompt_embeds': negative_prompt_embeds, | |
'guidance_scale': guidance_scale, | |
'num_inference_steps': num_inference_steps, | |
'width': width, | |
'height': height, | |
'generator': generator, | |
} | |
image = pipe(**params).images[0] | |
return image | |
examples = [ | |
"A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.", | |
] | |
examples_negative = [ | |
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
available_models = [ | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"CompVis/stable-diffusion-v1-4", | |
] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky") | |
with gr.Row(): | |
model = gr.Dropdown( | |
label="Model Selection", | |
choices=available_models, | |
value="stable-diffusion-v1-5/stable-diffusion-v1-5", | |
interactive=True | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.5, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=4, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=30, | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Blocks(): | |
with gr.Row(): | |
use_control_net = gr.Checkbox( | |
label="Use ControlNet", | |
value=False, | |
) | |
with gr.Column(visible=False) as control_net_options: | |
control_strength = gr.Slider( | |
label="Control Strength", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
) | |
control_mode = gr.Dropdown( | |
label="Control Mode", | |
choices=[ | |
"pose_estimation", | |
], | |
value="pose_estimation", | |
) | |
source_image = gr.Image(label="Upload Source Image") | |
control_image = gr.Image(label="Upload Control Image") | |
use_control_net.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=use_control_net, | |
outputs=control_net_options, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.Examples(examples=examples_negative, inputs=[negative_prompt]) | |
run_button = gr.Button("Run", scale=1, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_inference_steps, | |
model, | |
seed, | |
guidance_scale, | |
lora_scale, | |
use_control_net, # Добавляем чекбокс для ControlNet | |
control_strength, # Добавляем контроль силы | |
source_image, # Добавляем исходное изображение | |
control_image, # Добавляем контрольное изображение | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |