Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
# app.py 07.02.25
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
-
from diffusers import StableDiffusionPipeline
|
7 |
from peft import PeftModel, LoraConfig
|
|
|
8 |
import os
|
9 |
|
10 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -14,13 +13,16 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
14 |
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
15 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
|
|
|
|
|
|
|
|
|
17 |
def get_lora_sd_pipeline(
|
18 |
lora_dir='./lora_man_animestyle',
|
19 |
base_model_name_or_path=None,
|
20 |
dtype=torch.float16,
|
21 |
adapter_name="default"
|
22 |
-
|
23 |
-
|
24 |
unet_sub_dir = os.path.join(lora_dir, "unet")
|
25 |
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder")
|
26 |
|
@@ -59,6 +61,11 @@ def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
|
59 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
60 |
|
61 |
pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def infer(
|
64 |
prompt,
|
@@ -70,34 +77,54 @@ def infer(
|
|
70 |
seed=4,
|
71 |
guidance_scale=7.5,
|
72 |
lora_scale=0.5,
|
|
|
|
|
|
|
73 |
progress=gr.Progress(track_tqdm=True)
|
74 |
-
|
75 |
-
|
76 |
generator = torch.Generator(device).manual_seed(seed)
|
77 |
|
78 |
-
if
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
else:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
return
|
101 |
|
102 |
examples = [
|
103 |
"A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.",
|
@@ -198,27 +225,14 @@ with gr.Blocks(css=css) as demo:
|
|
198 |
value=512,
|
199 |
)
|
200 |
|
201 |
-
# Функция для работы с ControlNet ---------------------------------------------------------------------
|
202 |
-
def process_input_ControlNet(image, use_control_net, control_strength, control_mode):
|
203 |
-
if use_control_net:
|
204 |
-
# Логика для обработки с использованием ControlNet
|
205 |
-
result = f"ControlNet активен! Режим: {control_mode}, Интенсивность: {control_strength}"
|
206 |
-
else:
|
207 |
-
# Логика для обработки без ControlNet
|
208 |
-
result = "ControlNet отключен."
|
209 |
-
return result
|
210 |
-
|
211 |
with gr.Blocks():
|
212 |
with gr.Row():
|
213 |
-
# Чекбокс для включения/отключения ControlNet
|
214 |
use_control_net = gr.Checkbox(
|
215 |
label="Use ControlNet",
|
216 |
value=False,
|
217 |
)
|
218 |
|
219 |
-
# Дополнительные опции для ControlNet
|
220 |
with gr.Column(visible=False) as control_net_options:
|
221 |
-
# Слайдер для настройки интенсивности
|
222 |
control_strength = gr.Slider(
|
223 |
label="Control Strength",
|
224 |
minimum=0.0,
|
@@ -227,59 +241,28 @@ with gr.Blocks(css=css) as demo:
|
|
227 |
step=0.05,
|
228 |
)
|
229 |
|
230 |
-
# Выпадающий список для выбора режима
|
231 |
control_mode = gr.Dropdown(
|
232 |
label="Control Mode",
|
233 |
choices=[
|
234 |
-
"edge_detection",
|
235 |
-
"canny_edge_detection",
|
236 |
"pose_estimation",
|
237 |
-
"depth_map",
|
238 |
-
"segmentation_map",
|
239 |
-
"scribble_sketch",
|
240 |
-
"normal_map",
|
241 |
-
"hed_edge_detection",
|
242 |
-
"openpose",
|
243 |
-
"mlsd_line_detection",
|
244 |
-
"scribble_diffusion",
|
245 |
-
"semantic_segmentation",
|
246 |
-
"style_transfer",
|
247 |
-
"colorization",
|
248 |
-
"custom_map"
|
249 |
],
|
250 |
value="pose_estimation",
|
251 |
)
|
252 |
|
253 |
-
# Окно для загрузки изображений
|
254 |
control_image = gr.Image(label="Upload Control Image")
|
255 |
|
256 |
-
# Кнопка для запуска работы ControlNet
|
257 |
-
run_button = gr.Button("Run")
|
258 |
-
|
259 |
-
# Текстовое поле для вывода результата
|
260 |
-
output = gr.Textbox(label="Output")
|
261 |
-
|
262 |
-
# Логика для отображения/скрытия дополнительных опций
|
263 |
use_control_net.change(
|
264 |
fn=lambda x: gr.Row.update(visible=x),
|
265 |
inputs=use_control_net,
|
266 |
outputs=control_net_options,
|
267 |
)
|
268 |
|
269 |
-
# Привязка кнопки Run к функции работы с ControlNet
|
270 |
-
run_button.click(
|
271 |
-
fn=process_input_ControlNet,
|
272 |
-
inputs=[control_image, use_control_net, control_strength, control_mode],
|
273 |
-
outputs=output,
|
274 |
-
)
|
275 |
-
|
276 |
gr.Examples(examples=examples, inputs=[prompt])
|
277 |
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
|
278 |
|
279 |
run_button = gr.Button("Run", scale=1, variant="primary")
|
280 |
result = gr.Image(label="Result", show_label=False)
|
281 |
|
282 |
-
|
283 |
gr.on(
|
284 |
triggers=[run_button.click, prompt.submit],
|
285 |
fn=infer,
|
@@ -293,10 +276,12 @@ with gr.Blocks(css=css) as demo:
|
|
293 |
seed,
|
294 |
guidance_scale,
|
295 |
lora_scale,
|
|
|
|
|
|
|
296 |
],
|
297 |
outputs=[result],
|
298 |
)
|
299 |
|
300 |
if __name__ == "__main__":
|
301 |
demo.launch()
|
302 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
|
5 |
from peft import PeftModel, LoraConfig
|
6 |
+
from controlnet_aux import OpenposeDetector
|
7 |
import os
|
8 |
|
9 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
13 |
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
14 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
15 |
|
16 |
+
# Инициализация ControlNet и OpenposeDetector
|
17 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype)
|
18 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
19 |
+
|
20 |
def get_lora_sd_pipeline(
|
21 |
lora_dir='./lora_man_animestyle',
|
22 |
base_model_name_or_path=None,
|
23 |
dtype=torch.float16,
|
24 |
adapter_name="default"
|
25 |
+
):
|
|
|
26 |
unet_sub_dir = os.path.join(lora_dir, "unet")
|
27 |
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder")
|
28 |
|
|
|
61 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
62 |
|
63 |
pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
|
64 |
+
pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
|
65 |
+
model_default,
|
66 |
+
controlnet=controlnet,
|
67 |
+
torch_dtype=torch_dtype
|
68 |
+
).to(device)
|
69 |
|
70 |
def infer(
|
71 |
prompt,
|
|
|
77 |
seed=4,
|
78 |
guidance_scale=7.5,
|
79 |
lora_scale=0.5,
|
80 |
+
use_control_net=False, # Параметр для включения ControlNet
|
81 |
+
control_strength=0.5, # Сила влияния ControlNet
|
82 |
+
control_image=None, # Контрольное изображение
|
83 |
progress=gr.Progress(track_tqdm=True)
|
84 |
+
):
|
|
|
85 |
generator = torch.Generator(device).manual_seed(seed)
|
86 |
|
87 |
+
if use_control_net and control_image is not None:
|
88 |
+
# Используем ControlNet
|
89 |
+
pose_image = openpose(control_image)
|
90 |
+
image = pipe_controlnet(
|
91 |
+
prompt=prompt,
|
92 |
+
negative_prompt=negative_prompt,
|
93 |
+
image=pose_image,
|
94 |
+
width=width,
|
95 |
+
height=height,
|
96 |
+
num_inference_steps=num_inference_steps,
|
97 |
+
guidance_scale=guidance_scale,
|
98 |
+
controlnet_conditioning_scale=control_strength,
|
99 |
+
generator=generator
|
100 |
+
).images[0]
|
101 |
else:
|
102 |
+
# Стандартная генерация без ControlNet
|
103 |
+
if model != model_default:
|
104 |
+
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
|
105 |
+
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
106 |
+
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
107 |
+
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
108 |
+
else:
|
109 |
+
pipe = pipe_default
|
110 |
+
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
111 |
+
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
112 |
+
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
113 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
114 |
+
|
115 |
+
params = {
|
116 |
+
'prompt_embeds': prompt_embeds,
|
117 |
+
'negative_prompt_embeds': negative_prompt_embeds,
|
118 |
+
'guidance_scale': guidance_scale,
|
119 |
+
'num_inference_steps': num_inference_steps,
|
120 |
+
'width': width,
|
121 |
+
'height': height,
|
122 |
+
'generator': generator,
|
123 |
+
}
|
124 |
+
|
125 |
+
image = pipe(**params).images[0]
|
126 |
|
127 |
+
return image
|
128 |
|
129 |
examples = [
|
130 |
"A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.",
|
|
|
225 |
value=512,
|
226 |
)
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
with gr.Blocks():
|
229 |
with gr.Row():
|
|
|
230 |
use_control_net = gr.Checkbox(
|
231 |
label="Use ControlNet",
|
232 |
value=False,
|
233 |
)
|
234 |
|
|
|
235 |
with gr.Column(visible=False) as control_net_options:
|
|
|
236 |
control_strength = gr.Slider(
|
237 |
label="Control Strength",
|
238 |
minimum=0.0,
|
|
|
241 |
step=0.05,
|
242 |
)
|
243 |
|
|
|
244 |
control_mode = gr.Dropdown(
|
245 |
label="Control Mode",
|
246 |
choices=[
|
|
|
|
|
247 |
"pose_estimation",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
],
|
249 |
value="pose_estimation",
|
250 |
)
|
251 |
|
|
|
252 |
control_image = gr.Image(label="Upload Control Image")
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
use_control_net.change(
|
255 |
fn=lambda x: gr.Row.update(visible=x),
|
256 |
inputs=use_control_net,
|
257 |
outputs=control_net_options,
|
258 |
)
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
gr.Examples(examples=examples, inputs=[prompt])
|
261 |
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
|
262 |
|
263 |
run_button = gr.Button("Run", scale=1, variant="primary")
|
264 |
result = gr.Image(label="Result", show_label=False)
|
265 |
|
|
|
266 |
gr.on(
|
267 |
triggers=[run_button.click, prompt.submit],
|
268 |
fn=infer,
|
|
|
276 |
seed,
|
277 |
guidance_scale,
|
278 |
lora_scale,
|
279 |
+
use_control_net, # Добавляем чекбокс для ControlNet
|
280 |
+
control_strength, # Добавляем контроль силы
|
281 |
+
control_image, # Добавляем контрольное изображение
|
282 |
],
|
283 |
outputs=[result],
|
284 |
)
|
285 |
|
286 |
if __name__ == "__main__":
|
287 |
demo.launch()
|
|