Lifeinhockey commited on
Commit
6d0fa70
·
verified ·
1 Parent(s): 6e983aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -10
app.py CHANGED
@@ -84,15 +84,31 @@ def preprocess_image(image, target_width, target_height, resize_to_224=False):
84
  image = torch.from_numpy(image).to(device)
85
  return image
86
 
 
 
 
 
 
 
 
 
 
87
  def get_depth_map(image, depth_estimator):
88
- image = depth_estimator(image)["depth"]
89
- image = np.array(image)
90
- image = image[:, :, None]
91
- image = np.concatenate([image, image, image], axis=2)
92
- detected_map = torch.from_numpy(image).float() / 255.0
93
- depth_map = detected_map.permute(2, 0, 1)
 
 
 
 
 
 
 
94
  return depth_map
95
-
96
  pipe_default = get_lora_sd_pipeline(lora_dir='lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
97
 
98
  # ----------------------------------------------------------------------------------------------------------------------------------------------------
@@ -424,9 +440,9 @@ def infer(
424
 
425
  print('control_mode = ', control_mode)
426
 
427
- # Преобразуем изображения
428
- cn_source_image = preprocess_image(cn_source_image, width, height)
429
- control_image = preprocess_image(control_image, width, height)
430
 
431
  depth_estimator = pipeline("depth-estimation")
432
  depth_map = get_depth_map(control_image, depth_estimator).unsqueeze(0).half().to(device)
 
84
  image = torch.from_numpy(image).to(device)
85
  return image
86
 
87
+ # def get_depth_map(image, depth_estimator):
88
+ # image = depth_estimator(image)["depth"]
89
+ # image = np.array(image)
90
+ # image = image[:, :, None]
91
+ # image = np.concatenate([image, image, image], axis=2)
92
+ # detected_map = torch.from_numpy(image).float() / 255.0
93
+ # depth_map = detected_map.permute(2, 0, 1)
94
+ # return depth_map
95
+
96
  def get_depth_map(image, depth_estimator):
97
+ # Преобразуем изображение в PIL, если это необходимо
98
+ if isinstance(image, np.ndarray):
99
+ image = Image.fromarray(image)
100
+ elif isinstance(image, torch.Tensor):
101
+ image = Image.fromarray(image.cpu().numpy())
102
+
103
+ # Получаем карту глубины
104
+ depth_map = depth_estimator(image)["depth"]
105
+ depth_map = np.array(depth_map)
106
+ depth_map = depth_map[:, :, None] # Добавляем третье измерение
107
+ depth_map = np.concatenate([depth_map, depth_map, depth_map], axis=2) # Преобразуем в 3 канала
108
+ depth_map = torch.from_numpy(depth_map).float() / 255.0 # Нормализация [0, 1]
109
+ depth_map = depth_map.permute(2, 0, 1) # Меняем порядок осей (C, H, W)
110
  return depth_map
111
+
112
  pipe_default = get_lora_sd_pipeline(lora_dir='lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
113
 
114
  # ----------------------------------------------------------------------------------------------------------------------------------------------------
 
440
 
441
  print('control_mode = ', control_mode)
442
 
443
+ # # Преобразуем изображения
444
+ # cn_source_image = preprocess_image(cn_source_image, width, height)
445
+ # control_image = preprocess_image(control_image, width, height)
446
 
447
  depth_estimator = pipeline("depth-estimation")
448
  depth_map = get_depth_map(control_image, depth_estimator).unsqueeze(0).half().to(device)