Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,555 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from diffusers import (
|
5 |
-
StableDiffusionPipeline,
|
6 |
-
ControlNetModel,
|
7 |
-
StableDiffusionControlNetPipeline,
|
8 |
-
StableDiffusionControlNetImg2ImgPipeline,
|
9 |
-
AutoPipelineForImage2Image,
|
10 |
-
DDIMScheduler,
|
11 |
-
UniPCMultistepScheduler)
|
12 |
-
from transformers import pipeline
|
13 |
-
from diffusers.utils import load_image, make_image_grid
|
14 |
-
from peft import PeftModel, LoraConfig
|
15 |
-
import os
|
16 |
-
from PIL import Image
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
IP_ADAPTER = 'h94/IP-Adapter'
|
21 |
-
WEIGHT_NAME = "ip-adapter_sd15.bin"
|
22 |
-
WEIGHT_NAME_plus = "ip-adapter-plus_sd15.bin"
|
23 |
-
WEIGHT_NAME_face = "ip-adapter-full-face_sd15.bin"
|
24 |
-
|
25 |
-
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
26 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
28 |
-
|
29 |
-
def get_lora_sd_pipeline(
|
30 |
-
lora_dir='lora_man_animestyle',
|
31 |
-
base_model_name_or_path=None,
|
32 |
-
dtype=torch.float16,
|
33 |
-
adapter_name="default"
|
34 |
-
):
|
35 |
-
unet_sub_dir = os.path.join(lora_dir, "unet")
|
36 |
-
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder")
|
37 |
-
|
38 |
-
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
|
39 |
-
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
|
40 |
-
base_model_name_or_path = config.base_model_name_or_path
|
41 |
-
|
42 |
-
if base_model_name_or_path is None:
|
43 |
-
raise ValueError("Укажите название базовой модели или путь к ней")
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
48 |
-
pipe.unet.set_adapter(adapter_name)
|
49 |
-
after_params = pipe.unet.parameters()
|
50 |
-
|
51 |
-
if os.path.exists(text_encoder_sub_dir):
|
52 |
-
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
53 |
-
|
54 |
-
if dtype in (torch.float16, torch.bfloat16):
|
55 |
-
pipe.unet.half()
|
56 |
-
pipe.text_encoder.half()
|
57 |
-
|
58 |
-
return pipe
|
59 |
-
|
60 |
-
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
|
61 |
-
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
62 |
-
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
63 |
-
with torch.no_grad():
|
64 |
-
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s]
|
65 |
-
return torch.cat(embeds, dim=1)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
70 |
-
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
image = image.resize((224, 224), Image.LANCZOS)
|
79 |
-
else:
|
80 |
-
image = image.resize((target_width, target_height), Image.LANCZOS)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
image = torch.from_numpy(image).to(device)
|
85 |
-
return image
|
86 |
|
87 |
-
def get_depth_map(image, depth_estimator):
|
88 |
-
# Преобразуем изображение в PIL, если это необходимо
|
89 |
-
if isinstance(image, np.ndarray):
|
90 |
-
image = Image.fromarray(image)
|
91 |
-
elif isinstance(image, torch.Tensor):
|
92 |
-
image = Image.fromarray(image.cpu().numpy())
|
93 |
-
# Получаем карту глубины
|
94 |
-
depth_map = depth_estimator(image)["depth"]
|
95 |
-
depth_map = np.array(depth_map)
|
96 |
-
depth_map = depth_map[:, :, None] # Добавляем третье измерение
|
97 |
-
depth_map = np.concatenate([depth_map, depth_map, depth_map], axis=2) # Преобразуем в 3 канала
|
98 |
-
depth_map = torch.from_numpy(depth_map).float() / 255.0 # Нормализация [0, 1]
|
99 |
-
depth_map = depth_map.permute(2, 0, 1) # Меняем порядок осей (C, H, W)
|
100 |
-
return depth_map
|
101 |
-
|
102 |
-
pipe_default = get_lora_sd_pipeline(lora_dir='lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
|
103 |
|
104 |
-
#
|
105 |
def infer(
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
use_control_net=False, # Параметр для включения ControlNet
|
116 |
-
control_mode=None, # Параметр для выбора режима ControlNet
|
117 |
-
strength_cn=0.5, # Коэфф. зашумления ControlNet
|
118 |
-
control_strength=0.5, # Сила влияния ControlNet
|
119 |
-
cn_source_image=None, # Исходное изображение ControlNet
|
120 |
-
control_image=None, # Контрольное изображение ControlNet
|
121 |
-
use_ip_adapter=False, # Параметр для включения IP_adapter
|
122 |
-
ip_adapter_mode=None, # Параметр для выбора режима IP_adapter
|
123 |
-
strength_ip=0.5, # Коэфф. зашумления IP_adapter
|
124 |
-
ip_adapter_strength=0.5,# Сила влияния IP_adapter
|
125 |
-
controlnet_conditioning_scale=0.5, # Сила влияния ControlNet
|
126 |
-
ip_source_image=None, # Исходное изображение IP_adapter
|
127 |
-
ip_adapter_image=None, # Контрольное изображение IP_adapter
|
128 |
-
progress=gr.Progress(track_tqdm=True)
|
129 |
):
|
130 |
|
131 |
-
|
132 |
-
if
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
print('ip_adapter_mode = ', ip_adapter_mode)
|
137 |
-
|
138 |
-
# Инициализация ControlNet
|
139 |
-
controlnet_model_path = "lllyasviel/sd-controlnet-openpose"
|
140 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype)
|
141 |
-
|
142 |
-
generator = torch.Generator(device).manual_seed(seed)
|
143 |
-
|
144 |
-
pipe_ip_adapter = StableDiffusionControlNetPipeline.from_pretrained(
|
145 |
-
model_default,
|
146 |
-
controlnet=controlnet,
|
147 |
-
torch_dtype=torch_dtype
|
148 |
-
).to(device)
|
149 |
-
|
150 |
-
# Загрузка IP-Adapter
|
151 |
-
pipe_ip_adapter.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=WEIGHT_NAME_plus)
|
152 |
-
pipe_ip_adapter.set_ip_adapter_scale(ip_adapter_strength)
|
153 |
-
|
154 |
-
# Преобразование изображений для IP-Adapter (размер 224x224)
|
155 |
-
ip_source_image = preprocess_image(ip_source_image, width, height, resize_to_224=True)
|
156 |
-
ip_adapter_image = preprocess_image(ip_adapter_image, width, height, resize_to_224=True)
|
157 |
-
|
158 |
-
# Создаём пайплайн IP_adapter с LoRA, если он ещё не создан
|
159 |
-
if not hasattr(pipe_ip_adapter, 'lora_loaded') or not pipe_ip_adapter.lora_loaded:
|
160 |
-
# Загружаем LoRA для UNet
|
161 |
-
pipe_ip_adapter.unet = PeftModel.from_pretrained(
|
162 |
-
pipe_ip_adapter.unet,
|
163 |
-
'lora_man_animestyle/unet',
|
164 |
-
adapter_name="default"
|
165 |
-
)
|
166 |
-
pipe_ip_adapter.unet.set_adapter("default")
|
167 |
-
|
168 |
-
# Загружаем LoRA для Text Encoder, если она существует
|
169 |
-
text_encoder_lora_path = 'lora_man_animestyle/text_encoder'
|
170 |
-
if os.path.exists(text_encoder_lora_path):
|
171 |
-
pipe_ip_adapter.text_encoder = PeftModel.from_pretrained(
|
172 |
-
pipe_ip_adapter.text_encoder,
|
173 |
-
text_encoder_lora_path,
|
174 |
-
adapter_name="default"
|
175 |
-
)
|
176 |
-
pipe_ip_adapter.text_encoder.set_adapter("default")
|
177 |
-
|
178 |
-
# Объединяем LoRA с основной моделью
|
179 |
-
pipe_ip_adapter.fuse_lora(lora_scale=lora_scale)
|
180 |
-
pipe_ip_adapter.lora_loaded = True # Помечаем, что LoRA загружена
|
181 |
-
|
182 |
-
# Убедимся, что параметры имеют тип float
|
183 |
-
ip_adapter_strength = float(ip_adapter_strength)
|
184 |
-
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
|
185 |
-
|
186 |
-
# Используем IP-Adapter с LoRA
|
187 |
-
prompt_embeds = long_prompt_encoder(prompt, pipe_ip_adapter.tokenizer, pipe_ip_adapter.text_encoder)
|
188 |
-
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe_ip_adapter.tokenizer, pipe_ip_adapter.text_encoder)
|
189 |
-
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
190 |
-
image = pipe_ip_adapter(
|
191 |
-
prompt_embeds=prompt_embeds,
|
192 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
193 |
-
image=ip_adapter_image,
|
194 |
-
ip_adapter_image=ip_source_image,
|
195 |
-
strength=strength_ip,
|
196 |
-
width=width,
|
197 |
-
height=height,
|
198 |
-
num_inference_steps=num_inference_steps,
|
199 |
-
guidance_scale=guidance_scale,
|
200 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
201 |
-
generator=generator,
|
202 |
-
).images[0]
|
203 |
-
else:
|
204 |
-
|
205 |
-
if ip_adapter_mode == "edge_detection":
|
206 |
-
|
207 |
-
print('ip_adapter_mode = ', ip_adapter_mode)
|
208 |
-
|
209 |
-
# Инициализация ControlNet
|
210 |
-
controlnet_model_path = "lllyasviel/control_v11f1p_sd15_depth"
|
211 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype)
|
212 |
-
|
213 |
-
generator = torch.Generator(device).manual_seed(seed)
|
214 |
-
|
215 |
-
pipe_ip_adapter = StableDiffusionControlNetPipeline.from_pretrained(
|
216 |
-
model_default,
|
217 |
-
controlnet=controlnet,
|
218 |
-
torch_dtype=torch_dtype
|
219 |
-
).to(device)
|
220 |
-
|
221 |
-
# Загрузка IP-Adapter
|
222 |
-
#pipe_ip_adapter.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=WEIGHT_NAME_face)
|
223 |
-
pipe_ip_adapter.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=WEIGHT_NAME_plus)
|
224 |
-
pipe_ip_adapter.set_ip_adapter_scale(ip_adapter_strength)
|
225 |
-
|
226 |
-
# Преобразование изображений для IP-Adapter (размер 224x224)
|
227 |
-
ip_source_image = preprocess_image(ip_source_image, width, height, resize_to_224=True)
|
228 |
-
ip_adapter_image = preprocess_image(ip_adapter_image, width, height, resize_to_224=True)
|
229 |
-
|
230 |
-
# Создаём пайплайн IP_adapter с LoRA, если он ещё не создан
|
231 |
-
if not hasattr(pipe_ip_adapter, 'lora_loaded') or not pipe_ip_adapter.lora_loaded:
|
232 |
-
# Загружаем LoRA для UNet
|
233 |
-
pipe_ip_adapter.unet = PeftModel.from_pretrained(
|
234 |
-
pipe_ip_adapter.unet,
|
235 |
-
'lora_man_animestyle/unet',
|
236 |
-
adapter_name="default"
|
237 |
-
)
|
238 |
-
pipe_ip_adapter.unet.set_adapter("default")
|
239 |
-
|
240 |
-
# Загружаем LoRA для Text Encoder, если она существует
|
241 |
-
text_encoder_lora_path = 'lora_man_animestyle/text_encoder'
|
242 |
-
if os.path.exists(text_encoder_lora_path):
|
243 |
-
pipe_ip_adapter.text_encoder = PeftModel.from_pretrained(
|
244 |
-
pipe_ip_adapter.text_encoder,
|
245 |
-
text_encoder_lora_path,
|
246 |
-
adapter_name="default"
|
247 |
-
)
|
248 |
-
pipe_ip_adapter.text_encoder.set_adapter("default")
|
249 |
-
|
250 |
-
# Объединяем LoRA с основной моделью
|
251 |
-
pipe_ip_adapter.fuse_lora(lora_scale=lora_scale)
|
252 |
-
pipe_ip_adapter.lora_loaded = True # Помечаем, что LoRA загружена
|
253 |
-
|
254 |
-
# Убедимся, что параметры имеют тип float
|
255 |
-
ip_adapter_strength = float(ip_adapter_strength)
|
256 |
-
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
|
257 |
-
|
258 |
-
# Используем IP-Adapter с LoRA
|
259 |
-
prompt_embeds = long_prompt_encoder(prompt, pipe_ip_adapter.tokenizer, pipe_ip_adapter.text_encoder)
|
260 |
-
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe_ip_adapter.tokenizer, pipe_ip_adapter.text_encoder)
|
261 |
-
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
262 |
-
|
263 |
-
# scale = { # по умолчанию в остальных блоках везде 0.
|
264 |
-
# "down": {
|
265 |
-
# "block_0": [0.0, 1.0],
|
266 |
-
# "block_1": [0.0, 1.0],
|
267 |
-
# },
|
268 |
-
# "up": {
|
269 |
-
# "block_0": [0.0, 1.0, 0.0],
|
270 |
-
# "block_1": [0.0, 1.0, 0.0],
|
271 |
-
# },
|
272 |
-
# }
|
273 |
-
# scale = {
|
274 |
-
# "down": {"block_2": [0.0, 1.0]},
|
275 |
-
# "up": {"block_0": [0.0, 1.0, 0.0]},
|
276 |
-
# }
|
277 |
-
# pipe_ip_adapter.set_ip_adapter_scale(scale)
|
278 |
-
|
279 |
-
image = pipe_ip_adapter(
|
280 |
-
prompt_embeds=prompt_embeds,
|
281 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
282 |
-
image=ip_adapter_image,
|
283 |
-
ip_adapter_image=ip_source_image,
|
284 |
-
strength=strength_ip,
|
285 |
-
width=width,
|
286 |
-
height=height,
|
287 |
-
num_inference_steps=num_inference_steps,
|
288 |
-
guidance_scale=guidance_scale,
|
289 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
290 |
-
generator=generator,
|
291 |
-
).images[0]
|
292 |
-
else:
|
293 |
-
|
294 |
-
if ip_adapter_mode == "depth_map":
|
295 |
-
|
296 |
-
print('ip_adapter_mode = ', ip_adapter_mode)
|
297 |
-
|
298 |
-
# Убедимся, что параметры имеют тип float
|
299 |
-
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
|
300 |
-
|
301 |
-
# Инициализация ControlNet
|
302 |
-
controlnet_model_path = "lllyasviel/control_v11f1p_sd15_depth"
|
303 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype)
|
304 |
-
|
305 |
-
generator = torch.Generator(device).manual_seed(seed)
|
306 |
-
|
307 |
-
# Преобразование изображений для IP-Adapter (размер 224x224)
|
308 |
-
ip_source_image = preprocess_image(ip_source_image, width, height, resize_to_224=True)
|
309 |
-
ip_adapter_image = preprocess_image(ip_adapter_image, width, height, resize_to_224=True)
|
310 |
-
|
311 |
-
pipe_ip_adapter = StableDiffusionControlNetPipeline.from_pretrained(
|
312 |
-
model_default,
|
313 |
-
controlnet=controlnet,
|
314 |
-
torch_dtype=torch_dtype
|
315 |
-
).to(device)
|
316 |
-
pipe_ip_adapter.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=WEIGHT_NAME)
|
317 |
-
|
318 |
-
pipe_ip_adapter.set_ip_adapter_scale(ip_adapter_strength)
|
319 |
-
image = pipe_ip_adapter(
|
320 |
-
prompt=prompt,
|
321 |
-
negative_prompt=negative_prompt,
|
322 |
-
image=ip_source_image,
|
323 |
-
width=width,
|
324 |
-
height=height,
|
325 |
-
ip_adapter_image=ip_adapter_image,
|
326 |
-
num_inference_steps=num_inference_steps,
|
327 |
-
strength=strength_ip,
|
328 |
-
guidance_scale=guidance_scale,
|
329 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
330 |
-
generator=generator,
|
331 |
-
).images[0]
|
332 |
-
else:
|
333 |
-
|
334 |
-
if ip_adapter_mode == "face_model":
|
335 |
-
|
336 |
-
print('ip_adapter_mode = ', ip_adapter_mode)
|
337 |
-
|
338 |
-
# Преобразование изображений для IP-Adapter (размер 224x224)
|
339 |
-
ip_source_image = preprocess_image(ip_source_image, width, height, resize_to_224=True)
|
340 |
-
ip_adapter_image = preprocess_image(ip_adapter_image, width, height, resize_to_224=True)
|
341 |
-
|
342 |
-
pipe_ip_adapter = StableDiffusionPipeline.from_pretrained(
|
343 |
-
model_default,
|
344 |
-
torch_dtype=torch_dtype,
|
345 |
-
).to(device)
|
346 |
-
|
347 |
-
pipe_ip_adapter.scheduler = DDIMScheduler.from_config(pipe_ip_adapter.scheduler.config)
|
348 |
-
pipe_ip_adapter.load_ip_adapter(IP_ADAPTER, subfolder="models", weight_name=WEIGHT_NAME_face)
|
349 |
-
|
350 |
-
generator = torch.Generator(device).manual_seed(seed)
|
351 |
-
|
352 |
-
pipe_ip_adapter.set_ip_adapter_scale(ip_adapter_strength)
|
353 |
-
image = pipe_ip_adapter(
|
354 |
-
prompt=prompt,
|
355 |
-
negative_prompt=negative_prompt,
|
356 |
-
ip_adapter_image=ip_adapter_image,
|
357 |
-
width=width,
|
358 |
-
height=height,
|
359 |
-
guidance_scale=guidance_scale,
|
360 |
-
num_inference_steps=num_inference_steps,
|
361 |
-
generator=generator,
|
362 |
-
).images[0]
|
363 |
-
else:
|
364 |
-
# Генерация изображений с ControlNet ----------------------------------------------------------------------------------------------------------------
|
365 |
-
|
366 |
-
if use_control_net and control_image is not None and cn_source_image is not None:
|
367 |
-
|
368 |
-
if control_mode == "pose_estimation":
|
369 |
-
|
370 |
-
print('control_mode = ', control_mode)
|
371 |
-
|
372 |
-
# Инициализация ControlNet
|
373 |
-
controlnet_model_path = "lllyasviel/sd-controlnet-openpose"
|
374 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype)
|
375 |
-
|
376 |
-
generator = torch.Generator(device).manual_seed(seed)
|
377 |
-
|
378 |
-
pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
379 |
-
model_default,
|
380 |
-
controlnet=controlnet,
|
381 |
-
torch_dtype=torch_dtype
|
382 |
-
).to(device)
|
383 |
-
|
384 |
-
# Преобразуем изображения
|
385 |
-
cn_source_image = preprocess_image(cn_source_image, width, height)
|
386 |
-
control_image = preprocess_image(control_image, width, height)
|
387 |
-
|
388 |
-
# Создаём пайплайн ControlNet с LoRA, если он ещё не создан
|
389 |
-
if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded:
|
390 |
-
# Загружаем LoRA для UNet
|
391 |
-
pipe_controlnet.unet = PeftModel.from_pretrained(
|
392 |
-
pipe_controlnet.unet,
|
393 |
-
'lora_man_animestyle/unet',
|
394 |
-
adapter_name="default"
|
395 |
-
)
|
396 |
-
pipe_controlnet.unet.set_adapter("default")
|
397 |
-
|
398 |
-
# Загружаем LoRA для Text Encoder, если она существует
|
399 |
-
text_encoder_lora_path = 'lora_man_animestyle/text_encoder'
|
400 |
-
if os.path.exists(text_encoder_lora_path):
|
401 |
-
pipe_controlnet.text_encoder = PeftModel.from_pretrained(
|
402 |
-
pipe_controlnet.text_encoder,
|
403 |
-
text_encoder_lora_path,
|
404 |
-
adapter_name="default"
|
405 |
-
)
|
406 |
-
pipe_controlnet.text_encoder.set_adapter("default")
|
407 |
-
|
408 |
-
# Объединяем LoRA с основной моделью
|
409 |
-
pipe_controlnet.fuse_lora(lora_scale=lora_scale)
|
410 |
-
pipe_controlnet.lora_loaded = True # Помечаем, что LoRA загружена
|
411 |
-
|
412 |
-
# Убедимся, что control_strength имеет тип float
|
413 |
-
control_strength = float(control_strength)
|
414 |
-
#strength_sn = float(strength_sn)
|
415 |
-
|
416 |
-
# Используем ControlNet с LoRA
|
417 |
-
prompt_embeds = long_prompt_encoder(prompt, pipe_controlnet.tokenizer, pipe_controlnet.text_encoder)
|
418 |
-
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe_controlnet.tokenizer, pipe_controlnet.text_encoder)
|
419 |
-
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
420 |
-
image = pipe_controlnet(
|
421 |
-
prompt_embeds=prompt_embeds,
|
422 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
423 |
-
image=cn_source_image,
|
424 |
-
control_image=control_image,
|
425 |
-
strength=strength_cn,
|
426 |
-
width=width,
|
427 |
-
height=height,
|
428 |
-
num_inference_steps=num_inference_steps,
|
429 |
-
guidance_scale=guidance_scale,
|
430 |
-
controlnet_conditioning_scale=control_strength,
|
431 |
-
generator=generator
|
432 |
-
).images[0]
|
433 |
-
else:
|
434 |
|
435 |
-
|
436 |
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
-
|
440 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype, use_safetensors=True)
|
441 |
|
442 |
-
generator = torch.Generator(device).manual_seed(seed)
|
443 |
-
|
444 |
-
pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
|
445 |
-
model_default,
|
446 |
-
controlnet=controlnet,
|
447 |
-
torch_dtype=torch_dtype,
|
448 |
-
use_safetensors=True
|
449 |
-
).to(device)
|
450 |
-
|
451 |
-
pipe_controlnet.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
|
452 |
-
|
453 |
-
# Преобразуем изображения
|
454 |
-
cn_source_image = preprocess_image(cn_source_image, width, height)
|
455 |
-
control_image = preprocess_image(control_image, width, height)
|
456 |
-
|
457 |
-
image = pipe_controlnet(
|
458 |
-
prompt=prompt,
|
459 |
-
negative_prompt=negative_prompt,
|
460 |
-
image=cn_source_image,
|
461 |
-
control_image=control_image,
|
462 |
-
strength=strength_cn,
|
463 |
-
width=width,
|
464 |
-
height=height,
|
465 |
-
num_inference_steps=num_inference_steps,
|
466 |
-
guidance_scale=guidance_scale,
|
467 |
-
controlnet_conditioning_scale=control_strength,
|
468 |
-
generator=generator
|
469 |
-
).images[0]
|
470 |
-
else:
|
471 |
-
|
472 |
-
if control_mode == "depth_map":
|
473 |
-
|
474 |
-
print('control_mode = ', control_mode)
|
475 |
-
|
476 |
-
depth_estimator = pipeline("depth-estimation")
|
477 |
-
depth_map = get_depth_map(control_image, depth_estimator).unsqueeze(0).half().to(device)
|
478 |
-
|
479 |
-
controlnet_model_path = "lllyasviel/control_v11f1p_sd15_depth"
|
480 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype, use_safetensors=True)
|
481 |
-
|
482 |
-
generator = torch.Generator(device).manual_seed(seed)
|
483 |
-
|
484 |
-
pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
485 |
-
model_default,
|
486 |
-
controlnet=controlnet,
|
487 |
-
torch_dtype=torch_dtype,
|
488 |
-
use_safetensors=True
|
489 |
-
).to(device)
|
490 |
-
|
491 |
-
pipe_controlnet.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
|
492 |
-
|
493 |
-
image = pipe_controlnet(
|
494 |
-
prompt=prompt,
|
495 |
-
negative_prompt=negative_prompt,
|
496 |
-
image=control_image,
|
497 |
-
control_image=depth_map,
|
498 |
-
width=width,
|
499 |
-
height=height,
|
500 |
-
num_inference_steps=num_inference_steps,
|
501 |
-
guidance_scale=guidance_scale,
|
502 |
-
generator=generator
|
503 |
-
).images[0]
|
504 |
-
else:
|
505 |
-
# Генерация изображений с LORA без ControlNet и IP_Adapter ---------------------------------------------------------------------------------------------
|
506 |
-
|
507 |
-
# Инициализация ControlNet
|
508 |
-
controlnet_model_path = "lllyasviel/sd-controlnet-openpose"
|
509 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch_dtype)
|
510 |
-
|
511 |
-
generator = torch.Generator(device).manual_seed(seed)
|
512 |
-
|
513 |
-
if model != model_default:
|
514 |
-
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
|
515 |
-
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
516 |
-
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
517 |
-
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
518 |
-
else:
|
519 |
-
pipe = pipe_default
|
520 |
-
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
521 |
-
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
522 |
-
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
523 |
-
pipe.fuse_lora(lora_scale=lora_scale)
|
524 |
-
|
525 |
-
params = {
|
526 |
-
'prompt_embeds': prompt_embeds,
|
527 |
-
'negative_prompt_embeds': negative_prompt_embeds,
|
528 |
-
'guidance_scale': guidance_scale,
|
529 |
-
'num_inference_steps': num_inference_steps,
|
530 |
-
'width': width,
|
531 |
-
'height': height,
|
532 |
-
'generator': generator,
|
533 |
-
}
|
534 |
-
|
535 |
-
image = pipe(**params).images[0]
|
536 |
-
|
537 |
-
return image
|
538 |
-
# ---------------------------------------------------------------------------------------------------------------------------------------------
|
539 |
|
540 |
examples = [
|
541 |
-
"
|
542 |
-
|
543 |
-
"The smiling man. His face and hands are visible. Anime style. The best quality.",
|
544 |
-
"The smiling girl. Anime style. Best quality, high quality.",
|
545 |
-
"lego batman and robin. Rich and vibrant colors.",
|
546 |
-
"A photo of Pushkin as a hockey player in uniform with a stick, playing hockey on the ice arena in the NHL and scoring a goal.",
|
547 |
-
]
|
548 |
|
549 |
examples_negative = [
|
550 |
-
"
|
551 |
-
"Monochrome, lowres, bad anatomy, worst quality, low quality",
|
552 |
-
"lowres, bad anatomy, worst quality, low quality, black and white image.",
|
553 |
]
|
554 |
|
555 |
css = """
|
@@ -564,67 +74,54 @@ available_models = [
|
|
564 |
"CompVis/stable-diffusion-v1-4",
|
565 |
]
|
566 |
|
567 |
-
# -------------------------------------------------------------------------------------------------------------------------------------------------
|
568 |
with gr.Blocks(css=css) as demo:
|
|
|
569 |
with gr.Column(elem_id="col-container"):
|
570 |
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
|
571 |
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
prompt = gr.Textbox(
|
581 |
label="Prompt",
|
|
|
582 |
max_lines=1,
|
583 |
placeholder="Enter your prompt",
|
|
|
584 |
)
|
585 |
|
586 |
-
negative_prompt = gr.
|
587 |
label="Negative prompt",
|
588 |
max_lines=1,
|
589 |
placeholder="Enter a negative prompt",
|
|
|
590 |
)
|
591 |
-
|
592 |
-
with gr.Row():
|
593 |
-
lora_scale = gr.Slider(
|
594 |
-
label="LoRA scale",
|
595 |
-
minimum=0.0,
|
596 |
-
maximum=1.0,
|
597 |
-
step=0.01,
|
598 |
-
value=0.7,
|
599 |
-
)
|
600 |
-
|
601 |
-
with gr.Row():
|
602 |
-
guidance_scale = gr.Slider(
|
603 |
-
label="Guidance scale",
|
604 |
-
minimum=0.0,
|
605 |
-
maximum=10.0,
|
606 |
-
step=0.01,
|
607 |
-
value=7.5,
|
608 |
-
)
|
609 |
|
610 |
-
|
611 |
-
seed = gr.Slider(
|
612 |
label="Seed",
|
613 |
minimum=0,
|
614 |
maximum=MAX_SEED,
|
615 |
step=1,
|
616 |
-
value=
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
-
with gr.Row():
|
620 |
-
num_inference_steps = gr.Slider(
|
621 |
-
label="Number of inference steps",
|
622 |
-
minimum=1,
|
623 |
-
maximum=100,
|
624 |
-
step=1,
|
625 |
-
value=50,
|
626 |
-
)
|
627 |
-
|
628 |
with gr.Accordion("Advanced Settings", open=False):
|
629 |
with gr.Row():
|
630 |
width = gr.Slider(
|
@@ -632,160 +129,39 @@ with gr.Blocks(css=css) as demo:
|
|
632 |
minimum=256,
|
633 |
maximum=MAX_IMAGE_SIZE,
|
634 |
step=32,
|
635 |
-
value=512,
|
636 |
)
|
637 |
-
|
638 |
-
with gr.Row():
|
639 |
height = gr.Slider(
|
640 |
label="Height",
|
641 |
minimum=256,
|
642 |
maximum=MAX_IMAGE_SIZE,
|
643 |
step=32,
|
644 |
-
value=512,
|
645 |
)
|
646 |
|
647 |
-
|
648 |
-
|
649 |
-
with gr.Row():
|
650 |
-
use_control_net = gr.Checkbox(
|
651 |
-
label="Use ControlNet",
|
652 |
-
value=False,
|
653 |
-
)
|
654 |
-
|
655 |
-
with gr.Column(visible=False) as control_net_options:
|
656 |
-
strength_cn = gr.Slider(
|
657 |
-
label="Strength",
|
658 |
-
minimum=0.0,
|
659 |
-
maximum=1.0,
|
660 |
-
value=0.5,
|
661 |
-
step=0.01,
|
662 |
-
interactive=True,
|
663 |
-
)
|
664 |
-
|
665 |
-
control_strength = gr.Slider(
|
666 |
-
label="Control Strength",
|
667 |
-
minimum=0.0,
|
668 |
-
maximum=1.0,
|
669 |
-
value=0.5,
|
670 |
-
step=0.01,
|
671 |
-
interactive=True,
|
672 |
-
)
|
673 |
-
|
674 |
-
control_mode = gr.Dropdown(
|
675 |
-
label="Control Mode",
|
676 |
-
choices=[
|
677 |
-
"pose_estimation",
|
678 |
-
"edge_detection",
|
679 |
-
"depth_map",
|
680 |
-
],
|
681 |
-
value="pose_estimation",
|
682 |
-
interactive=True,
|
683 |
-
)
|
684 |
-
|
685 |
-
cn_source_image = gr.Image(label="Upload Source Image")
|
686 |
-
|
687 |
-
control_image = gr.Image(label="Upload Control Net Image")
|
688 |
-
|
689 |
-
use_control_net.change(
|
690 |
-
fn=lambda x: gr.update(visible=x),
|
691 |
-
inputs=use_control_net,
|
692 |
-
outputs=control_net_options
|
693 |
-
)
|
694 |
-
|
695 |
-
# IP_Adapter ------------------------------------------------------------------------------------------------
|
696 |
-
with gr.Blocks():
|
697 |
-
with gr.Row():
|
698 |
-
use_ip_adapter = gr.Checkbox(
|
699 |
-
label="Use IP_Adapter",
|
700 |
-
value=False,
|
701 |
-
)
|
702 |
-
|
703 |
-
with gr.Column(visible=False) as ip_adapter_options:
|
704 |
-
strength_ip = gr.Slider(
|
705 |
-
label="Strength",
|
706 |
-
minimum=0.0,
|
707 |
-
maximum=1.0,
|
708 |
-
value=0.5,
|
709 |
-
step=0.01,
|
710 |
-
interactive=True,
|
711 |
-
)
|
712 |
-
|
713 |
-
ip_adapter_strength = gr.Slider(
|
714 |
-
label="IP_Adapter Strength",
|
715 |
-
minimum=0.0,
|
716 |
-
maximum=1.0,
|
717 |
-
value=0.5,
|
718 |
-
step=0.01,
|
719 |
-
interactive=True,
|
720 |
-
)
|
721 |
-
|
722 |
-
controlnet_conditioning_scale = gr.Slider(
|
723 |
-
label="Controlnet conditioning scale",
|
724 |
-
minimum=0.0,
|
725 |
-
maximum=1.0,
|
726 |
-
value=0.5,
|
727 |
-
step=0.01,
|
728 |
-
interactive=True,
|
729 |
-
)
|
730 |
-
|
731 |
-
ip_adapter_mode = gr.Dropdown(
|
732 |
-
label="Ip_Adapter Mode",
|
733 |
-
choices=[
|
734 |
-
"pose_estimation",
|
735 |
-
"edge_detection",
|
736 |
-
"depth_map",
|
737 |
-
"face_model"
|
738 |
-
],
|
739 |
-
value="pose_estimation",
|
740 |
-
interactive=True,
|
741 |
-
)
|
742 |
-
|
743 |
-
ip_source_image = gr.Image(label="Upload Source Image")
|
744 |
-
|
745 |
-
ip_adapter_image = gr.Image(label="Upload IP_Adapter Image")
|
746 |
-
|
747 |
-
use_ip_adapter.change(
|
748 |
-
fn=lambda x: gr.update(visible=x),
|
749 |
-
inputs=use_ip_adapter,
|
750 |
-
outputs=ip_adapter_options
|
751 |
-
)
|
752 |
-
# ---------------------------------------------------------------------------------------------------------
|
753 |
|
754 |
-
gr.
|
755 |
-
gr.
|
756 |
|
757 |
-
run_button = gr.Button("Run", scale=1, variant="primary")
|
758 |
-
result = gr.Image(label="Result", show_label=False)
|
759 |
-
|
760 |
gr.on(
|
761 |
triggers=[run_button.click, prompt.submit],
|
762 |
fn=infer,
|
763 |
inputs=[
|
|
|
764 |
prompt,
|
765 |
negative_prompt,
|
766 |
-
|
767 |
width,
|
768 |
height,
|
769 |
-
num_inference_steps,
|
770 |
-
seed,
|
771 |
guidance_scale,
|
772 |
-
|
773 |
-
use_control_net, # Параметр для включения ControlNet
|
774 |
-
control_mode, # Параметр для выбора режима ControlNet
|
775 |
-
strength_cn, # Коэфф. зашумления ControlNet
|
776 |
-
control_strength, # Сила влияния ControlNet
|
777 |
-
cn_source_image, # Исходное изображение ControlNet
|
778 |
-
control_image, # Контрольное изображение ControlNet
|
779 |
-
use_ip_adapter, # Параметр для включения IP_adapter
|
780 |
-
ip_adapter_mode, # Параметр для выбора режима IP_adapter
|
781 |
-
strength_ip, # Коэфф. зашумления IP_adapter
|
782 |
-
ip_adapter_strength,# Сила влияния IP_adapter
|
783 |
-
controlnet_conditioning_scale, # Сила влияния ControlNet
|
784 |
-
ip_source_image, # Исходное изображение IP_adapter
|
785 |
-
ip_adapter_image, # Контрольное изображение IP_adapter
|
786 |
],
|
787 |
-
outputs=[result],
|
788 |
)
|
789 |
|
790 |
if __name__ == "__main__":
|
791 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
|
|
|
|
10 |
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
torch_dtype = torch.float16
|
13 |
+
else:
|
14 |
+
torch_dtype = torch.float32
|
15 |
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
+
pipe = pipe.to(device)
|
|
|
|
|
|
|
18 |
|
19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
MAX_IMAGE_SIZE = 1024
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
24 |
def infer(
|
25 |
+
model,
|
26 |
+
prompt,
|
27 |
+
negative_prompt,
|
28 |
+
seed,
|
29 |
+
width,
|
30 |
+
height,
|
31 |
+
guidance_scale,
|
32 |
+
num_inference_steps,
|
33 |
+
progress=gr.Progress(track_tqdm=True),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
):
|
35 |
|
36 |
+
global model_repo_id
|
37 |
+
if model != model_repo_id:
|
38 |
+
print(model, model_repo_id)
|
39 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
|
40 |
+
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
generator = torch.Generator().manual_seed(seed)
|
43 |
|
44 |
+
image = pipe(
|
45 |
+
prompt=prompt,
|
46 |
+
negative_prompt=negative_prompt,
|
47 |
+
guidance_scale=guidance_scale,
|
48 |
+
num_inference_steps=num_inference_steps,
|
49 |
+
width=width,
|
50 |
+
height=height,
|
51 |
+
generator=generator,
|
52 |
+
).images[0]
|
53 |
|
54 |
+
return image, seed
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
examples = [
|
58 |
+
"Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
|
59 |
+
]
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
examples_negative = [
|
62 |
+
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
|
|
|
|
|
63 |
]
|
64 |
|
65 |
css = """
|
|
|
74 |
"CompVis/stable-diffusion-v1-4",
|
75 |
]
|
76 |
|
|
|
77 |
with gr.Blocks(css=css) as demo:
|
78 |
+
|
79 |
with gr.Column(elem_id="col-container"):
|
80 |
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
|
81 |
|
82 |
+
model = gr.Dropdown(
|
83 |
+
label="Model Selection",
|
84 |
+
choices=available_models,
|
85 |
+
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
|
86 |
+
interactive=True
|
87 |
+
)
|
88 |
+
prompt = gr.Text(
|
|
|
|
|
89 |
label="Prompt",
|
90 |
+
show_label=False,
|
91 |
max_lines=1,
|
92 |
placeholder="Enter your prompt",
|
93 |
+
container=False,
|
94 |
)
|
95 |
|
96 |
+
negative_prompt = gr.Text(
|
97 |
label="Negative prompt",
|
98 |
max_lines=1,
|
99 |
placeholder="Enter a negative prompt",
|
100 |
+
visible=True,
|
101 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
seed = gr.Slider(
|
|
|
104 |
label="Seed",
|
105 |
minimum=0,
|
106 |
maximum=MAX_SEED,
|
107 |
step=1,
|
108 |
+
value=0,
|
109 |
+
)
|
110 |
+
guidance_scale = gr.Slider(
|
111 |
+
label="Guidance scale",
|
112 |
+
minimum=0.0,
|
113 |
+
maximum=10.0,
|
114 |
+
step=0.1,
|
115 |
+
value=7.5, # Replace with defaults that work for your model
|
116 |
+
)
|
117 |
+
num_inference_steps = gr.Slider(
|
118 |
+
label="Number of inference steps",
|
119 |
+
minimum=1,
|
120 |
+
maximum=100,
|
121 |
+
step=1,
|
122 |
+
value=30, # Replace with defaults that work for your model
|
123 |
+
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Accordion("Advanced Settings", open=False):
|
126 |
with gr.Row():
|
127 |
width = gr.Slider(
|
|
|
129 |
minimum=256,
|
130 |
maximum=MAX_IMAGE_SIZE,
|
131 |
step=32,
|
132 |
+
value=512, # Replace with defaults that work for your model
|
133 |
)
|
134 |
+
|
|
|
135 |
height = gr.Slider(
|
136 |
label="Height",
|
137 |
minimum=256,
|
138 |
maximum=MAX_IMAGE_SIZE,
|
139 |
step=32,
|
140 |
+
value=512, # Replace with defaults that work for your model
|
141 |
)
|
142 |
|
143 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
144 |
+
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
147 |
+
result = gr.Image(label="Result", show_label=False)
|
148 |
|
|
|
|
|
|
|
149 |
gr.on(
|
150 |
triggers=[run_button.click, prompt.submit],
|
151 |
fn=infer,
|
152 |
inputs=[
|
153 |
+
model,
|
154 |
prompt,
|
155 |
negative_prompt,
|
156 |
+
seed,
|
157 |
width,
|
158 |
height,
|
|
|
|
|
159 |
guidance_scale,
|
160 |
+
num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
],
|
162 |
+
outputs=[result, seed],
|
163 |
)
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
demo.launch()
|
167 |
+
|