Lifeinhockey commited on
Commit
6ee559d
·
verified ·
1 Parent(s): 84d010d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -16
app.py CHANGED
@@ -22,8 +22,8 @@ WEIGHT_NAME = "ip-adapter_sd15.bin"
22
  WEIGHT_NAME_plus = "ip-adapter-plus_sd15.bin"
23
  WEIGHT_NAME_face = "ip-adapter-full-face_sd15.bin"
24
 
25
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
26
  model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
 
27
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
28
 
29
  def get_lora_sd_pipeline(
@@ -105,10 +105,10 @@ pipe_default = get_lora_sd_pipeline(lora_dir='lora_man_animestyle', base_model_n
105
  def infer(
106
  prompt,
107
  negative_prompt,
 
108
  width=512,
109
  height=512,
110
  num_inference_steps=50,
111
- model=model_default, #'stable-diffusion-v1-5/stable-diffusion-v1-5',
112
  seed=4,
113
  guidance_scale=7.5,
114
  lora_scale=0.7,
@@ -188,9 +188,9 @@ def infer(
188
  image = pipe_ip_adapter(
189
  prompt_embeds=prompt_embeds,
190
  negative_prompt_embeds=negative_prompt_embeds,
191
- image=ip_adapter_image, #ip_source_image,
192
- ip_adapter_image=ip_source_image, #ip_adapter_image,
193
- strength=strength_ip, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
194
  width=width,
195
  height=height,
196
  num_inference_steps=num_inference_steps,
@@ -276,9 +276,9 @@ def infer(
276
  image = pipe_ip_adapter(
277
  prompt_embeds=prompt_embeds,
278
  negative_prompt_embeds=negative_prompt_embeds,
279
- image=ip_adapter_image, #ip_source_image,
280
- ip_adapter_image=ip_source_image, #ip_adapter_image,
281
- strength=strength_ip, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
282
  width=width,
283
  height=height,
284
  num_inference_steps=num_inference_steps,
@@ -318,7 +318,7 @@ def infer(
318
  height=height,
319
  ip_adapter_image=ip_adapter_image,
320
  num_inference_steps=num_inference_steps,
321
- strength=strength_ip, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
322
  guidance_scale=guidance_scale,
323
  controlnet_conditioning_scale=0.99, #controlnet_conditioning_scale,
324
  generator=generator,
@@ -385,7 +385,7 @@ def infer(
385
  negative_prompt_embeds=negative_prompt_embeds,
386
  image=cn_source_image,
387
  control_image=control_image,
388
- strength=strength_cn, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
389
  width=width,
390
  height=height,
391
  num_inference_steps=num_inference_steps,
@@ -405,7 +405,7 @@ def infer(
405
  generator = torch.Generator(device).manual_seed(seed)
406
 
407
  pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
408
- model_default, #"stable-diffusion-v1-5/stable-diffusion-v1-5",
409
  controlnet=controlnet,
410
  torch_dtype=torch_dtype,
411
  use_safetensors=True
@@ -422,7 +422,7 @@ def infer(
422
  negative_prompt=negative_prompt,
423
  image=cn_source_image,
424
  control_image=control_image,
425
- strength=strength_cn, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
426
  width=width,
427
  height=height,
428
  num_inference_steps=num_inference_steps,
@@ -445,7 +445,7 @@ def infer(
445
  generator = torch.Generator(device).manual_seed(seed)
446
 
447
  pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
448
- model_default, #"stable-diffusion-v1-5/stable-diffusion-v1-5",
449
  controlnet=controlnet,
450
  torch_dtype=torch_dtype,
451
  use_safetensors=True
@@ -458,12 +458,10 @@ def infer(
458
  negative_prompt=negative_prompt,
459
  image=control_image,
460
  control_image=depth_map,
461
- #strength=strength_cn, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
462
  width=width,
463
  height=height,
464
  num_inference_steps=num_inference_steps,
465
  guidance_scale=guidance_scale,
466
- #controlnet_conditioning_scale=control_strength,
467
  generator=generator
468
  ).images[0]
469
  else:
@@ -712,10 +710,10 @@ with gr.Blocks(css=css) as demo:
712
  inputs=[
713
  prompt,
714
  negative_prompt,
 
715
  width,
716
  height,
717
  num_inference_steps,
718
- model,
719
  seed,
720
  guidance_scale,
721
  lora_scale,
 
22
  WEIGHT_NAME_plus = "ip-adapter-plus_sd15.bin"
23
  WEIGHT_NAME_face = "ip-adapter-full-face_sd15.bin"
24
 
 
25
  model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
26
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
28
 
29
  def get_lora_sd_pipeline(
 
105
  def infer(
106
  prompt,
107
  negative_prompt,
108
+ model=model_default,
109
  width=512,
110
  height=512,
111
  num_inference_steps=50,
 
112
  seed=4,
113
  guidance_scale=7.5,
114
  lora_scale=0.7,
 
188
  image = pipe_ip_adapter(
189
  prompt_embeds=prompt_embeds,
190
  negative_prompt_embeds=negative_prompt_embeds,
191
+ image=ip_adapter_image,
192
+ ip_adapter_image=ip_source_image,
193
+ strength=strength_ip,
194
  width=width,
195
  height=height,
196
  num_inference_steps=num_inference_steps,
 
276
  image = pipe_ip_adapter(
277
  prompt_embeds=prompt_embeds,
278
  negative_prompt_embeds=negative_prompt_embeds,
279
+ image=ip_adapter_image,
280
+ ip_adapter_image=ip_source_image,
281
+ strength=strength_ip,
282
  width=width,
283
  height=height,
284
  num_inference_steps=num_inference_steps,
 
318
  height=height,
319
  ip_adapter_image=ip_adapter_image,
320
  num_inference_steps=num_inference_steps,
321
+ strength=strength_ip,
322
  guidance_scale=guidance_scale,
323
  controlnet_conditioning_scale=0.99, #controlnet_conditioning_scale,
324
  generator=generator,
 
385
  negative_prompt_embeds=negative_prompt_embeds,
386
  image=cn_source_image,
387
  control_image=control_image,
388
+ strength=strength_cn,
389
  width=width,
390
  height=height,
391
  num_inference_steps=num_inference_steps,
 
405
  generator = torch.Generator(device).manual_seed(seed)
406
 
407
  pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
408
+ model_default,
409
  controlnet=controlnet,
410
  torch_dtype=torch_dtype,
411
  use_safetensors=True
 
422
  negative_prompt=negative_prompt,
423
  image=cn_source_image,
424
  control_image=control_image,
425
+ strength=strength_cn,
426
  width=width,
427
  height=height,
428
  num_inference_steps=num_inference_steps,
 
445
  generator = torch.Generator(device).manual_seed(seed)
446
 
447
  pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
448
+ model_default,
449
  controlnet=controlnet,
450
  torch_dtype=torch_dtype,
451
  use_safetensors=True
 
458
  negative_prompt=negative_prompt,
459
  image=control_image,
460
  control_image=depth_map,
 
461
  width=width,
462
  height=height,
463
  num_inference_steps=num_inference_steps,
464
  guidance_scale=guidance_scale,
 
465
  generator=generator
466
  ).images[0]
467
  else:
 
710
  inputs=[
711
  prompt,
712
  negative_prompt,
713
+ model,
714
  width,
715
  height,
716
  num_inference_steps,
 
717
  seed,
718
  guidance_scale,
719
  lora_scale,