Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
import random
|
5 |
import torch
|
6 |
from diffusers import StableDiffusionPipeline
|
7 |
from peft import PeftModel, LoraConfig
|
8 |
-
|
9 |
|
10 |
def get_lora_sd_pipeline(
|
11 |
-
ckpt_dir='./
|
12 |
base_model_name_or_path=None,
|
13 |
dtype=torch.float16,
|
14 |
adapter_name="default"
|
@@ -55,10 +53,10 @@ def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
|
55 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
56 |
|
57 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
-
model_id_default = "
|
59 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
60 |
|
61 |
-
pipe_default = get_lora_sd_pipeline(ckpt_dir='./
|
62 |
|
63 |
MAX_SEED = np.iinfo(np.int32).max
|
64 |
MAX_IMAGE_SIZE = 1024
|
@@ -69,9 +67,9 @@ def infer(
|
|
69 |
width=512,
|
70 |
height=512,
|
71 |
num_inference_steps=20,
|
72 |
-
model_id=
|
73 |
seed=42,
|
74 |
-
guidance_scale=7.
|
75 |
lora_scale=0.5,
|
76 |
progress=gr.Progress(track_tqdm=True)
|
77 |
):
|
@@ -104,21 +102,6 @@ def infer(
|
|
104 |
|
105 |
return pipe(**params).images[0]
|
106 |
|
107 |
-
|
108 |
-
examples = [
|
109 |
-
"Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
|
110 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
111 |
-
"An astronaut riding a green horse.",
|
112 |
-
"A delicious ceviche cheesecake slice.",
|
113 |
-
"A futuristic sports car is located on the surface of Mars. Stars, planets, mountains and craters are visible.",
|
114 |
-
]
|
115 |
-
|
116 |
-
examples_negative = [
|
117 |
-
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
|
118 |
-
"blurry details, low resolution, poorly defined edges",
|
119 |
-
"bad face, bad quality, artifacts, low-res, black and white",
|
120 |
-
]
|
121 |
-
|
122 |
css = """
|
123 |
#col-container {
|
124 |
margin: 0 auto;
|
@@ -126,55 +109,30 @@ css = """
|
|
126 |
}
|
127 |
"""
|
128 |
|
129 |
-
available_models = [
|
130 |
-
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
131 |
-
"SG161222/Realistic_Vision_V3.0_VAE",
|
132 |
-
"CompVis/stable-diffusion-v1-4",
|
133 |
-
"stabilityai/sdxl-turbo",
|
134 |
-
"runwayml/stable-diffusion-v1-5",
|
135 |
-
"sd-legacy/stable-diffusion-v1-5",
|
136 |
-
"prompthero/openjourney",
|
137 |
-
"stabilityai/stable-diffusion-3-medium-diffusers",
|
138 |
-
"stabilityai/stable-diffusion-3.5-large",
|
139 |
-
"stabilityai/stable-diffusion-3.5-large-turbo",
|
140 |
-
]
|
141 |
-
|
142 |
with gr.Blocks(css=css) as demo:
|
143 |
-
|
144 |
with gr.Column(elem_id="col-container"):
|
145 |
-
gr.Markdown(" # Text-to-Image
|
146 |
-
|
147 |
with gr.Row():
|
148 |
-
model_id = gr.
|
149 |
-
label="Model
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
)
|
154 |
|
155 |
-
prompt = gr.
|
156 |
label="Prompt",
|
157 |
-
show_label=False,
|
158 |
max_lines=1,
|
159 |
placeholder="Enter your prompt",
|
160 |
-
container=False,
|
161 |
)
|
162 |
-
|
|
|
163 |
label="Negative prompt",
|
164 |
max_lines=1,
|
165 |
placeholder="Enter a negative prompt",
|
166 |
-
visible=True,
|
167 |
)
|
168 |
|
169 |
-
with gr.Row():
|
170 |
-
lora_scale = gr.Slider(
|
171 |
-
label="LoRA scale",
|
172 |
-
minimum=0.0,
|
173 |
-
maximum=1.0,
|
174 |
-
step=0.1,
|
175 |
-
value=0.5,
|
176 |
-
)
|
177 |
-
|
178 |
with gr.Row():
|
179 |
seed = gr.Number(
|
180 |
label="Seed",
|
@@ -184,60 +142,67 @@ with gr.Blocks(css=css) as demo:
|
|
184 |
value=42,
|
185 |
)
|
186 |
|
187 |
-
with gr.Row():
|
188 |
guidance_scale = gr.Slider(
|
189 |
label="Guidance scale",
|
190 |
minimum=0.0,
|
191 |
maximum=10.0,
|
192 |
step=0.1,
|
193 |
-
value=7.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
)
|
195 |
|
196 |
-
with gr.Row():
|
197 |
num_inference_steps = gr.Slider(
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
)
|
204 |
|
205 |
-
with gr.Accordion("
|
206 |
with gr.Row():
|
207 |
width = gr.Slider(
|
208 |
label="Width",
|
209 |
minimum=256,
|
210 |
maximum=MAX_IMAGE_SIZE,
|
211 |
step=32,
|
212 |
-
value=512,
|
213 |
)
|
214 |
-
|
|
|
215 |
height = gr.Slider(
|
216 |
label="Height",
|
217 |
minimum=256,
|
218 |
maximum=MAX_IMAGE_SIZE,
|
219 |
step=32,
|
220 |
-
value=512,
|
221 |
)
|
222 |
|
223 |
-
gr.
|
224 |
-
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
|
225 |
-
|
226 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
227 |
result = gr.Image(label="Result", show_label=False)
|
228 |
-
|
229 |
gr.on(
|
230 |
triggers=[run_button.click, prompt.submit],
|
231 |
fn=infer,
|
232 |
inputs=[
|
233 |
-
model_id,
|
234 |
prompt,
|
235 |
negative_prompt,
|
236 |
-
seed,
|
237 |
width,
|
238 |
height,
|
239 |
-
guidance_scale,
|
240 |
num_inference_steps,
|
|
|
|
|
|
|
241 |
lora_scale,
|
242 |
],
|
243 |
outputs=[result],
|
@@ -245,3 +210,4 @@ with gr.Blocks(css=css) as demo:
|
|
245 |
|
246 |
if __name__ == "__main__":
|
247 |
demo.launch()
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import torch
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
from peft import PeftModel, LoraConfig
|
6 |
+
import os
|
7 |
|
8 |
def get_lora_sd_pipeline(
|
9 |
+
ckpt_dir='./lora_logos',
|
10 |
base_model_name_or_path=None,
|
11 |
dtype=torch.float16,
|
12 |
adapter_name="default"
|
|
|
53 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
54 |
|
55 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
56 |
+
model_id_default = "CompVis/stable-diffusion-v1-4"
|
57 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
58 |
|
59 |
+
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)
|
60 |
|
61 |
MAX_SEED = np.iinfo(np.int32).max
|
62 |
MAX_IMAGE_SIZE = 1024
|
|
|
67 |
width=512,
|
68 |
height=512,
|
69 |
num_inference_steps=20,
|
70 |
+
model_id='CompVis/stable-diffusion-v1-4',
|
71 |
seed=42,
|
72 |
+
guidance_scale=7.0,
|
73 |
lora_scale=0.5,
|
74 |
progress=gr.Progress(track_tqdm=True)
|
75 |
):
|
|
|
102 |
|
103 |
return pipe(**params).images[0]
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
css = """
|
106 |
#col-container {
|
107 |
margin: 0 auto;
|
|
|
109 |
}
|
110 |
"""
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with gr.Blocks(css=css) as demo:
|
|
|
113 |
with gr.Column(elem_id="col-container"):
|
114 |
+
gr.Markdown(" # DEMO Text-to-Image")
|
115 |
+
|
116 |
with gr.Row():
|
117 |
+
model_id = gr.Textbox(
|
118 |
+
label="Model ID",
|
119 |
+
max_lines=1,
|
120 |
+
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
|
121 |
+
value=model_id_default
|
122 |
)
|
123 |
|
124 |
+
prompt = gr.Textbox(
|
125 |
label="Prompt",
|
|
|
126 |
max_lines=1,
|
127 |
placeholder="Enter your prompt",
|
|
|
128 |
)
|
129 |
+
|
130 |
+
negative_prompt = gr.Textbox(
|
131 |
label="Negative prompt",
|
132 |
max_lines=1,
|
133 |
placeholder="Enter a negative prompt",
|
|
|
134 |
)
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
with gr.Row():
|
137 |
seed = gr.Number(
|
138 |
label="Seed",
|
|
|
142 |
value=42,
|
143 |
)
|
144 |
|
145 |
+
with gr.Row():
|
146 |
guidance_scale = gr.Slider(
|
147 |
label="Guidance scale",
|
148 |
minimum=0.0,
|
149 |
maximum=10.0,
|
150 |
step=0.1,
|
151 |
+
value=7.0,
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
lora_scale = gr.Slider(
|
156 |
+
label="LoRA scale",
|
157 |
+
minimum=0.0,
|
158 |
+
maximum=1.0,
|
159 |
+
step=0.1,
|
160 |
+
value=0.5,
|
161 |
)
|
162 |
|
163 |
+
with gr.Row():
|
164 |
num_inference_steps = gr.Slider(
|
165 |
+
label="Number of inference steps",
|
166 |
+
minimum=1,
|
167 |
+
maximum=50,
|
168 |
+
step=1,
|
169 |
+
value=20,
|
170 |
)
|
171 |
|
172 |
+
with gr.Accordion("Optional Settings", open=False):
|
173 |
with gr.Row():
|
174 |
width = gr.Slider(
|
175 |
label="Width",
|
176 |
minimum=256,
|
177 |
maximum=MAX_IMAGE_SIZE,
|
178 |
step=32,
|
179 |
+
value=512,
|
180 |
)
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
height = gr.Slider(
|
184 |
label="Height",
|
185 |
minimum=256,
|
186 |
maximum=MAX_IMAGE_SIZE,
|
187 |
step=32,
|
188 |
+
value=512,
|
189 |
)
|
190 |
|
191 |
+
run_button = gr.Button("Run", scale=1, variant="primary")
|
|
|
|
|
|
|
192 |
result = gr.Image(label="Result", show_label=False)
|
193 |
+
|
194 |
gr.on(
|
195 |
triggers=[run_button.click, prompt.submit],
|
196 |
fn=infer,
|
197 |
inputs=[
|
|
|
198 |
prompt,
|
199 |
negative_prompt,
|
|
|
200 |
width,
|
201 |
height,
|
|
|
202 |
num_inference_steps,
|
203 |
+
model_id,
|
204 |
+
seed,
|
205 |
+
guidance_scale,
|
206 |
lora_scale,
|
207 |
],
|
208 |
outputs=[result],
|
|
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
demo.launch()
|
213 |
+
|