import gradio as gr import numpy as np import torch from diffusers import StableDiffusionPipeline from peft import PeftModel, LoraConfig import os MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 def get_lora_sd_pipeline( lora_dir='./lora_man_animestyle', base_model_name_or_path=None, dtype=torch.float16, adapter_name="default" ): unet_sub_dir = os.path.join(lora_dir, "unet") text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraConfig.from_pretrained(text_encoder_sub_dir) base_model_name_or_path = config.base_model_name_or_path if base_model_name_or_path is None: raise ValueError("Укажите название базовой модели или путь к ней") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype) before_params = pipe.unet.parameters() pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) pipe.unet.set_adapter(adapter_name) after_params = pipe.unet.parameters() if os.path.exists(text_encoder_sub_dir): pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() return pipe def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77): tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"] part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)] with torch.no_grad(): embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s] return torch.cat(embeds, dim=1) def align_embeddings(prompt_embeds, negative_prompt_embeds): max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \ torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1])) pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device) def infer( prompt, negative_prompt, width=512, height=512, num_inference_steps=20, model='stable-diffusion-v1-5/stable-diffusion-v1-5', seed=4, guidance_scale=7.5, lora_scale=0.5, use_control_net=False, # Добавляем параметр для управления включением ControlNet #control_net_weight=1.0, control_strength_slider progress=gr.Progress(track_tqdm=True) ): generator = torch.Generator(device).manual_seed(seed) if model != model_default: pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device) prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) else: pipe = pipe_default prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) pipe.fuse_lora(lora_scale=lora_scale) # Коэфф. добавления lora params = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'guidance_scale': guidance_scale, 'num_inference_steps': num_inference_steps, 'width': width, 'height': height, 'generator': generator, } if use_control_net: # Если ControlNet включен params['control_net'] = True # Включаем использование ControlNet params['control_net_weight'] = control_net_weight # Устанавливаем вес ControlNet return pipe(**params).images[0] examples = [ "A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands, fingers and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", "An astronaut riding a green horse.", ] examples_negative = [ "blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image", "blurry details, low resolution, poorly defined edges", "bad face, bad quality, artifacts, low-res, black and white", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ available_models = [ "stable-diffusion-v1-5/stable-diffusion-v1-5", "SG161222/Realistic_Vision_V3.0_VAE", "CompVis/stable-diffusion-v1-4", "stabilityai/sdxl-turbo", "runwayml/stable-diffusion-v1-5", "sd-legacy/stable-diffusion-v1-5", "prompthero/openjourney", "stabilityai/stable-diffusion-3-medium-diffusers", "stabilityai/stable-diffusion-3.5-large", "stabilityai/stable-diffusion-3.5-large-turbo", ] with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky") with gr.Row(): model = gr.Dropdown( label="Model Selection", choices=available_models, value="stable-diffusion-v1-5/stable-diffusion-v1-5", interactive=True ) prompt = gr.Textbox( label="Prompt", max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) with gr.Row(): lora_scale = gr.Slider( label="LoRA scale", minimum=0.0, maximum=1.0, step=0.05, value=0.5, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=4, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=30, ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) def toggle_controlnet_options(use_control_net): if use_control_net: return gr.Column.update(visible=True) else: return gr.Column.update(visible=False) with gr.Blocks(): #as demo: with gr.Row(): use_control_net = gr.Checkbox(label="Use ControlNet", value=False) with gr.Column(visible=False) as controlnet_column: with gr.Row(): control_strength_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Control Strength") with gr.Row(): control_mode_dropdown = gr.Dropdown(['edge_detection', 'pose_estimation'], label='Control Mode') with gr.Row(): control_image_input = gr.Image(type="pil", label="Upload Image for ControlNet") use_control_net.change(toggle_controlnet_options, inputs=[use_control_net], outputs=[controlnet_column], show_progress=False) gr.Examples(examples=examples, inputs=[prompt]) gr.Examples(examples=examples_negative, inputs=[negative_prompt]) run_button = gr.Button("Run", scale=1, variant="primary") result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, width, height, num_inference_steps, model, seed, guidance_scale, lora_scale, use_control_net, # Передаем состояние чекбокса #control_net_weight, # Передаем вес ControlNet ], outputs=[result], ) if __name__ == "__main__": demo.launch()