File size: 2,774 Bytes
833590f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from abc import ABC, abstractmethod
from typing import Tuple

import torch
from diffusers.configuration_utils import ConfigMixin
from einops import rearrange
from torch import Tensor


class Patchifier(ConfigMixin, ABC):
    def __init__(self, patch_size: int):
        super().__init__()
        self._patch_size = (1, patch_size, patch_size)

    @abstractmethod
    def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]:
        raise NotImplementedError("Patchify method not implemented")

    @abstractmethod
    def unpatchify(
        self,
        latents: Tensor,
        output_height: int,
        output_width: int,
        out_channels: int,
    ) -> Tuple[Tensor, Tensor]:
        pass

    @property
    def patch_size(self):
        return self._patch_size

    def get_latent_coords(
        self, latent_num_frames, latent_height, latent_width, batch_size, device
    ):
        """
        Return a tensor of shape [batch_size, 3, num_patches] containing the
            top-left corner latent coordinates of each latent patch.
        The tensor is repeated for each batch element.
        """
        latent_sample_coords = torch.meshgrid(
            torch.arange(0, latent_num_frames, self._patch_size[0], device=device),
            torch.arange(0, latent_height, self._patch_size[1], device=device),
            torch.arange(0, latent_width, self._patch_size[2], device=device),
        )
        latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
        latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
        latent_coords = rearrange(
            latent_coords, "b c f h w -> b c (f h w)", b=batch_size
        )
        return latent_coords


class SymmetricPatchifier(Patchifier):
    def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]:
        b, _, f, h, w = latents.shape
        latent_coords = self.get_latent_coords(f, h, w, b, latents.device)
        latents = rearrange(
            latents,
            "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
            p1=self._patch_size[0],
            p2=self._patch_size[1],
            p3=self._patch_size[2],
        )
        return latents, latent_coords

    def unpatchify(
        self,
        latents: Tensor,
        output_height: int,
        output_width: int,
        out_channels: int,
    ) -> Tuple[Tensor, Tensor]:
        output_height = output_height // self._patch_size[1]
        output_width = output_width // self._patch_size[2]
        latents = rearrange(
            latents,
            "b (f h w) (c p q) -> b c f (h p) (w q)",
            h=output_height,
            w=output_width,
            p=self._patch_size[1],
            q=self._patch_size[2],
        )
        return latents